def __init__(self, test_scenes, study_info_, constraint_csv_removed_users=None): Model.__init__( self, ProximityModel.name, test_scenes, study_info_, constraint_csv_removed_users=constraint_csv_removed_users) prototype_array = [] weight_array = [] for feature in self.all_feature_keys: if feature != "shortest_distance": prototype_array.append(0) weight_array.append(0) else: x = self.feature_processer.convert_normal_value_to_standardised( feature, 0) prototype_array.append(x) weight_array.append(1) self.prototype_array = np.array(prototype_array) self.weight_array = np.array(weight_array)
def __init__(self, test_scenes, study_info_, constraint_csv_removed_users=None): Model.__init__( self, SimpleModel.name, test_scenes, study_info_, constraint_csv_removed_users=constraint_csv_removed_users) self.prototype_dictionary = dict() self.weight_dictionary = dict() in_prototype, in_weights = self.generate_arrays( {"bbox_overlap_proportion": 1}) self.prototype_dictionary["in"] = self.prototype_dictionary[ "inside"] = in_prototype self.weight_dictionary["in"] = self.weight_dictionary[ "inside"] = in_weights on_prototype, on_weights = self.generate_arrays({ "above_proportion": 1, "contact_proportion": 1 }) self.prototype_dictionary["on"] = self.prototype_dictionary[ "on top of"] = on_prototype self.weight_dictionary["on"] = self.weight_dictionary[ "on top of"] = on_weights above_prototype, above_weights = self.generate_arrays({ "above_proportion": 1, "horizontal_distance": 0 }) self.prototype_dictionary["above"] = self.prototype_dictionary[ "over"] = above_prototype self.weight_dictionary["above"] = self.weight_dictionary[ "over"] = above_weights below_prototype, below_weights = self.generate_arrays({ "below_proportion": 1, "horizontal_distance": 0 }) self.prototype_dictionary["below"] = self.prototype_dictionary[ "under"] = below_prototype self.weight_dictionary["below"] = self.weight_dictionary[ "under"] = below_weights against_prototype, against_weights = self.generate_arrays({ "contact_proportion": 1, "horizontal_distance": 0 }) self.prototype_dictionary["against"] = against_prototype self.weight_dictionary["against"] = against_weights
def __init__(self, preposition_model_dict, test_scenes, study_info_, constraint_csv_removed_users=None): self.preposition_model_dict = preposition_model_dict Model.__init__( self, CSModel.name, test_scenes, study_info_, constraint_csv_removed_users=constraint_csv_removed_users)
def __init__( self, preposition_model_dict: Dict[str, GeneratePrepositionModelParameters], test_scenes, study_info_, train_test_proportion=float(1), number_of_epochs=200, make_plots=False, test_prepositions=None): Model.__init__(self, self.name, test_scenes, study_info_, test_prepositions=test_prepositions) self.models = dict() self.preposition_model_dict = preposition_model_dict self.training_data_dict = {} self.callbacks = None self.number_of_epochs = number_of_epochs self.train_test_proportion = train_test_proportion self.make_plots = make_plots for p in self.test_prepositions: self.training_data_dict[ p] = self.convert_train_dataframe_to_tfdataset( preposition_model_dict[p].train_dataset, p) if self.train_test_proportion == 1: train = self.training_data_dict[p] model = self.train_model(p, train) self.callbacks = [high_acc_callback] else: train_amount = int( len(self.training_data_dict[p]) * self.train_test_proportion) train = self.training_data_dict[p].take(train_amount) test = self.training_data_dict[p].skip(train_amount) model = self.train_model(p, train, test) self.models[p] = model
def __init__(self, name, test_scenes, study_info_, test_prepositions=PREPOSITION_LIST): """Summary Args: name (TYPE): Description test_scenes (TYPE): Description study_info_ (TYPE): Description :param test_prepositions: """ Model.__init__(self, name, test_scenes, study_info_, test_prepositions=test_prepositions)
def __init__(self, train_scenes, test_scenes, study_info_, features_to_remove, train_test_proportion=float(1), number_of_epochs=200, make_plots=False, test_prepositions=None): Model.__init__(self, self.name, test_scenes, study_info_, test_prepositions=test_prepositions) self.models = dict() self.train_scenes = train_scenes self.features_to_remove = features_to_remove self.number_of_epochs = number_of_epochs self.train_test_proportion = train_test_proportion self.make_plots = make_plots self.models = dict() self.train_datasets = dict() self.callbacks = None for p in self.test_prepositions: self.train_datasets[p] = self.prepare_train_dataset(p) if self.train_test_proportion == 1: train = self.train_datasets[p] model = self.train_model(p, train) self.callbacks = [perfect_acc_callback] else: train_amount = int( len(self.train_datasets[p]) * self.train_test_proportion) train = self.train_datasets[p].take(train_amount) test = self.train_datasets[p].skip(train_amount) model = self.train_model(p, train, test) self.models[p] = model
def __init__( self, preposition_model_dict: Dict[str, GeneratePrepositionModelParameters], test_scenes, study_info_: StudyInfo, test_prepositions=PREPOSITION_LIST, constraint_csv_removed_users=None): self.preposition_model_dict = preposition_model_dict Model.__init__( self, PrototypeModel.name, test_scenes, study_info_, test_prepositions=test_prepositions, constraint_csv_removed_users=constraint_csv_removed_users) if len(test_scenes) < len(study_info_.scene_name_list): for p in self.test_prepositions: train_scenes = set(self.preposition_model_dict[p].train_scenes) if (any(x in train_scenes for x in test_scenes)): raise ValueError("Train and test scene overlap.")
def __init__(self, test_scenes, study_info_, constraint_csv_removed_users=None): Model.__init__( self, BestGuessModel.name, test_scenes, study_info_, constraint_csv_removed_users=constraint_csv_removed_users) self.prototype_dictionary = dict() self.weight_dictionary = dict() inside_prototype, inside_weights = self.generate_arrays( {"bbox_overlap_proportion": 1}) self.prototype_dictionary["inside"] = inside_prototype self.weight_dictionary["inside"] = inside_weights in_prototype, in_weights = self.generate_arrays({ "bbox_overlap_proportion": 1, "location_control": 1 }) self.prototype_dictionary["in"] = in_prototype self.weight_dictionary["in"] = in_weights on_prototype, on_weights = self.generate_arrays({ "above_proportion": 1, "contact_proportion": 1, "support": 1 }) self.prototype_dictionary["on"] = on_prototype self.weight_dictionary["on"] = on_weights ontopof_prototype, ontopof_weights = self.generate_arrays({ "above_proportion": 1, "contact_proportion": 1 }) self.prototype_dictionary["on top of"] = ontopof_prototype self.weight_dictionary["on top of"] = ontopof_weights above_prototype, above_weights = self.generate_arrays({ "above_proportion": 1, "horizontal_distance": 0 }) self.prototype_dictionary["above"] = above_prototype self.weight_dictionary["above"] = above_weights over_prototype, over_weights = self.generate_arrays({ "above_proportion": 1, "f_covers_g": 1 }) self.prototype_dictionary["over"] = over_prototype self.weight_dictionary["over"] = over_weights below_prototype, below_weights = self.generate_arrays({ "below_proportion": 1, "horizontal_distance": 0 }) self.prototype_dictionary["below"] = below_prototype self.weight_dictionary["below"] = below_weights under_prototype, under_weights = self.generate_arrays({ "below_proportion": 1, "g_covers_f": 1 }) self.prototype_dictionary["under"] = under_prototype self.weight_dictionary["under"] = under_weights against_prototype, against_weights = self.generate_arrays({ "contact_proportion": 1, "horizontal_distance": 0, "location_control": 0.5 }) self.prototype_dictionary["against"] = against_prototype self.weight_dictionary["against"] = against_weights