def LArCalibPedMonConfig(inputFlags, gain="", doAccDigit=False, doCalibDigit=False, doAccCalibDigit=False): from AthenaMonitoring import AthMonitorCfgHelper helper = AthMonitorCfgHelper(inputFlags, 'LArCalibPedMonCfg') from LArMonitoring.GlobalVariables import lArDQGlobals from AthenaConfiguration.ComponentFactory import CompFactory larPedMonAlg = helper.addAlgorithm(CompFactory.LArCalibPedMonAlg, 'larCalibPedMonAlg') if gain != "": if doAccDigit: larPedMonAlg.LArAccumulatedDigitContainerKey = gain elif doAccCalibDigit: larPedMonAlg.LArAccumulatedCalibDigitContainerKey = gain elif doCalibDigit: larPedMonAlg.LArCalibDigitContainerKey = gain GroupName = "PedMonGroup" larPedMonAlg.LArPedGroupName = GroupName Group = helper.addGroup(larPedMonAlg, GroupName, '/LAr/' + GroupName + '/') #Summary histos summary_hist_path = 'Summary/' Group.defineHistogram( 'nbChan;NbOfReadoutChannelsGlobal', title='# of readout channels', type='TH1I', path=summary_hist_path, xbins=lArDQGlobals.N_FEB * lArDQGlobals.FEB_N_channels + 5, xmin=-0.5, xmax=lArDQGlobals.N_FEB * lArDQGlobals.FEB_N_channels + 4.5) return helper.result()
def PixelMonitoringConfig(flags): from AthenaConfiguration.ComponentAccumulator import ComponentAccumulator acc = ComponentAccumulator() # run on RAW only if flags.DQ.Environment in ('online', 'tier0', 'tier0Raw'): kwargsHitMonAlg = { 'doOnline' : flags.Common.isOnline, #Histograms for online (athenaPT) running 'doModules' : flags.Common.isOnline, #Turn on/off the sets of 1744 module histograms (for dqmf) 'doLumiBlock' : not flags.Common.isOnline, #Turn on/off histograms stored for each lumi block 'doLowOccupancy' : False, #Turn on/off histograms with binning for cosmics/single beam 'doHighOccupancy' : True, #Turn on/off histograms with binning for collisions #'doHeavyIonMon' : InDetFlags.doHeavyIon(), # Histogram modification for heavy ion monitoring #'RDOName' : InDetKeys.PixelRDOs() 'doHeavyIonMon' : False, #Until new config ready 'RDOName' : 'PixelRDOs',#Until new config ready } kwargsClusMonAlg = { 'doOnline' : flags.Common.isOnline, #Histograms for online (athenaPT) running 'doModules' : flags.Common.isOnline, #Turn on/off the sets of 1744 module histograms (for dqmf) 'doLumiBlock' : not flags.Common.isOnline, #Turn on/off histograms stored for each lumi block 'doLowOccupancy' : False, #Turn on/off histograms with binning for cosmics/single beam 'doHighOccupancy' : True, #Turn on/off histograms with binning for collisions #'doHeavyIonMon' : InDetFlags.doHeavyIon(), # Histogram modification for heavy ion monitoring 'doHeavyIonMon' : False, #Until new config ready # 'doStatus' : True, #Turn on/off histograms with Module Status information #'ClusterName' : InDetKeys.PixelClusters(), 'ClusterName' : 'PixelClusters', #Until new config ready #'TrackName' : InDetKeys.Tracks() 'TrackName' : 'Tracks', #Until new config ready } kwargsErrMonAlg = { 'doOnline' : flags.Common.isOnline, #Histograms for online (athenaPT) running 'doModules' : flags.Common.isOnline, #Turn on/off the sets of 1744 module histograms (for dqmf) 'doLumiBlock' : not flags.Common.isOnline, #Turn on/off histograms stored for each lumi block 'doLowOccupancy' : False, #Turn on/off histograms with binning for cosmics/single beam 'doHighOccupancy' : True, #Turn on/off histograms with binning for collisions #'doHeavyIonMon' : InDetFlags.doHeavyIon() 'doHeavyIonMon' : False, #Until new config is ready } from AthenaMonitoring import AthMonitorCfgHelper helper = AthMonitorCfgHelper(flags, "NewPixelMonitoring") from AthenaConfiguration.ComponentFactory import CompFactory from PixelMonitoring.PixelAthHitMonAlgCfg import PixelAthHitMonAlgCfg pixelAthHitMonAlg = helper.addAlgorithm(CompFactory.PixelAthHitMonAlg, 'PixelAthHitMonAlg') for k, v in kwargsHitMonAlg.items(): setattr(pixelAthHitMonAlg, k, v) PixelAthHitMonAlgCfg(helper, pixelAthHitMonAlg, **kwargsHitMonAlg) from PixelMonitoring.PixelAthClusterMonAlgCfg import PixelAthClusterMonAlgCfg pixelAthClusterMonAlg = helper.addAlgorithm(CompFactory.PixelAthClusterMonAlg, 'PixelAthClusterMonAlg') for k, v in kwargsClusMonAlg.items(): setattr(pixelAthClusterMonAlg, k, v) pixelAthClusterMonAlg.TrackSelectionTool.UseTrkTrackTools = True pixelAthClusterMonAlg.TrackSelectionTool.CutLevel = "TightPrimary" pixelAthClusterMonAlg.TrackSelectionTool.maxNPixelHoles = 1 pixelAthClusterMonAlg.TrackSelectionTool.maxD0 = 2 pixelAthClusterMonAlg.TrackSelectionTool.maxZ0 = 150 # Run 3 configs - stolen from SCT from SCT_Monitoring.TrackSummaryToolWorkaround import TrackSummaryToolWorkaround pixelAthClusterMonAlg.TrackSelectionTool.TrackSummaryTool = acc.popToolsAndMerge(TrackSummaryToolWorkaround(flags)) pixelAthClusterMonAlg.TrackSelectionTool.Extrapolator = acc.getPublicTool("InDetExtrapolator") PixelAthClusterMonAlgCfg(helper, pixelAthClusterMonAlg, **kwargsClusMonAlg) from PixelMonitoring.PixelMonitoringConf import PixelAthErrorMonAlg from PixelMonitoring.PixelAthErrorMonAlgCfg import PixelAthErrorMonAlgCfg pixelAthMonAlgErrorMonAlg = helper.addAlgorithm(PixelAthErrorMonAlg, 'PixelAthErrorMonAlg') for k, v in kwargsErrMonAlg.items(): setattr(pixelAthMonAlgErrorMonAlg, k, v) from PixelConditionsTools.PixelConditionsToolsConf import PixelByteStreamErrorsTool pixelAthMonAlgErrorMonAlg.PixelByteStreamErrorsTool = PixelByteStreamErrorsTool(ReadingESD = (flags.DQ.Environment == 'tier0ESD')) PixelAthErrorMonAlgCfg(helper, pixelAthMonAlgErrorMonAlg, **kwargsErrMonAlg) acc.merge(helper.result()) return acc
def TileJetMonitoringConfig(flags, **kwargs): ''' Function to configure TileJetMonitorAlgorithm algorithm in the monitoring system.''' # Define one top-level monitoring algorithm. The new configuration # framework uses a component accumulator. from AthenaConfiguration.ComponentAccumulator import ComponentAccumulator result = ComponentAccumulator() from TileGeoModel.TileGMConfig import TileGMCfg result.merge(TileGMCfg(flags)) from LArGeoAlgsNV.LArGMConfig import LArGMCfg result.merge(LArGMCfg(flags)) from TileConditions.TileCablingSvcConfig import TileCablingSvcCfg result.merge(TileCablingSvcCfg(flags)) from TileConditions.TileBadChannelsConfig import TileBadChanToolCfg badChanTool = result.popToolsAndMerge(TileBadChanToolCfg(flags)) # The following class will make a sequence, configure algorithms, and link # them to GenericMonitoringTools from AthenaMonitoring import AthMonitorCfgHelper helper = AthMonitorCfgHelper(flags, 'TileMonitoring') # Adding an TileJetMonitorAlgorithm algorithm to the helper from AthenaConfiguration.ComponentFactory import CompFactory tileJetMonAlg = helper.addAlgorithm(CompFactory.TileJetMonitorAlgorithm, 'TileJetMonAlg') tileJetMonAlg.TileBadChanTool = badChanTool tileJetMonAlg.TriggerChain = '' for k, v in kwargs.items(): setattr(tileJetMonAlg, k, v) DoEnergyProfiles = kwargs.get( 'DoEnergyProfiles', tileJetMonAlg._descriptors['DoEnergyProfiles'].default) Do1DHistograms = kwargs.get( 'Do1DHistograms', tileJetMonAlg._descriptors['Do1DHistograms'].default) DoEnergyDiffHistograms = kwargs.get( 'DoEnergyDiffHistograms', tileJetMonAlg._descriptors['DoEnergyDiffHistograms'].default) if flags.DQ.DataType not in ('heavyioncollisions', 'cosmics'): jvtTool = CompFactory.JetVertexTaggerTool() jetContainer = kwargs.get( 'JetContainer', tileJetMonAlg._descriptors['JetContainer'].default) jvtTool.JetContainer = jetContainer tileJetMonAlg.JVT = jvtTool jetCleaningTool = CompFactory.JetCleaningTool() jetCleaningTool.CutLevel = "LooseBad" jetCleaningTool.DoUgly = False tileJetMonAlg.JetCleaningTool = jetCleaningTool result.addPublicTool(jetCleaningTool) jetPtMin = 20000 jetTrackingEtaLimit = 2.4 eventCleaningTool = CompFactory.ECUtils.EventCleaningTool() eventCleaningTool.JetCleaningTool = jetCleaningTool eventCleaningTool.PtCut = jetPtMin eventCleaningTool.EtaCut = jetTrackingEtaLimit eventCleaningTool.JvtDecorator = "passJvt" eventCleaningTool.OrDecorator = "passOR" eventCleaningTool.CleaningLevel = jetCleaningTool.CutLevel tileJetMonAlg.EventCleaningTool = eventCleaningTool tileJetMonAlg.JetTrackingEtaLimit = jetTrackingEtaLimit tileJetMonAlg.JetPtMin = jetPtMin tileJetMonAlg.DoEventCleaning = True tileJetMonAlg.DoJetCleaning = True else: tileJetMonAlg.DoEventCleaning = False tileJetMonAlg.DoJetCleaning = False # 1) Configure histogram with TileJetMonAlg algorithm execution time executeTimeGroup = helper.addGroup(tileJetMonAlg, 'TileJetMonExecuteTime', 'Tile/') executeTimeGroup.defineHistogram( 'TIME_execute', path='Jet', type='TH1F', title='Time for execute TileJetMonAlg algorithm;time [#mus]', xbins=300, xmin=0, xmax=300000) from TileMonitoring.TileMonitoringCfgHelper import addValueVsModuleAndChannelMaps, getPartitionName runNumber = flags.Input.RunNumber[0] # 2) Configure 2D histograms (profiles/maps) with Tile channel time vs module and channel per partion (DQ summary) channelTimeDQGroup = helper.addGroup(tileJetMonAlg, 'TileJetChanTimeDQ', 'Tile/Jet/') addValueVsModuleAndChannelMaps(channelTimeDQGroup, name='tileJetChanTime', title='Average time with jets', path='DQ', type='TProfile2D', value='time', run=str(runNumber)) gains = ['LG', 'HG'] partitions = ['LBA', 'LBC', 'EBA', 'EBC'] # 3a) Configure 1D histograms with Tile channel time per partition channelTimeGroup = helper.addGroup(tileJetMonAlg, 'TileJetChanTime', 'Tile/Jet/ChanTime/') for partition in partitions: title = 'Partition ' + partition + ': Tile Channel Time;time [ns];N' name = 'channelTime' + partition path = partition channelTimeGroup.defineHistogram(name, title=title, path=path, type='TH1F', xbins=600, xmin=-30.0, xmax=30.0) # 3b) Configure 1D histograms with Tile channel time per partition for extended barrels without scintillators for partition in ['EBA', 'EBC']: title = 'Partition ' + partition + ': Tile Channel Time (without scintillators);time [ns];N' name = 'channelTime' + partition + '_NoScint' path = partition channelTimeGroup.defineHistogram(name, title=title, path=path, type='TH1F', xbins=600, xmin=-30.0, xmax=30.0) # Energy upper limits of the cell-time histograms energiesHG = [ 500, 1000, 2000, 4000, 6000, 8000, 10000, 13000, 16000, 20000 ] energiesLG = [25000, 30000, 40000, 50000, 65000, 80000] energiesALL = {'LG': energiesLG, 'HG': energiesHG} tileJetMonAlg.CellEnergyUpperLimitsHG = energiesHG tileJetMonAlg.CellEnergyUpperLimitsLG = energiesLG # 4) Configure histograms with Tile cell time in energy slices per partition and gain cellTimeGroup = helper.addGroup(tileJetMonAlg, 'TileJetCellTime', 'Tile/Jet/CellTime/') for partition in partitions: for gain in gains: index = 0 energies = energiesALL[gain] for index in range(0, len(energies) + 1): toEnergy = energies[index] if index < len(energies) else None fromEnergy = energies[index - 1] if index > 0 else None name = 'Cell_time_' + partition + '_' + gain + '_slice_' + str( index) title = 'Partition ' + partition + ': ' + gain + ' Tile Cell time in energy range' if not toEnergy: title += ' > ' + str(fromEnergy) + ' MeV; time [ns]' elif not fromEnergy: title += ' < ' + str(toEnergy) + ' MeV; time [ns]' else: title += ' [' + str(fromEnergy) + ' .. ' + str( toEnergy) + ') MeV; time [ns]' cellTimeGroup.defineHistogram(name, title=title, path=partition, type='TH1F', xbins=600, xmin=-30.0, xmax=30.0) if DoEnergyProfiles: # 5) Configure 1D histograms (profiles) with Tile cell energy profile in energy slices per partition and gain cellEnergyProfileGroup = helper.addGroup(tileJetMonAlg, 'TileJetCellEnergyProfile', 'Tile/Jet/CellTime/') for partition in partitions: for gain in gains: name = 'index_' + partition + '_' + gain name += ',energy_' + partition + '_' + gain name += ';Cell_ene_' + partition + '_' + gain + '_prof' title = 'Partition ' + partition + ': ' + gain + ' Tile Cell energy profile;Slice;Energy [MeV]' xmax = len(energiesALL[gain]) + 0.5 nbins = len(energiesALL[gain]) + 1 cellEnergyProfileGroup.defineHistogram(name, title=title, path=partition, type='TProfile', xbins=nbins, xmin=-0.5, xmax=xmax) else: # 6) Configure 1D histograms with Tile cell energy in energy slices per partition, gain and slice cellEnergyGroup = helper.addGroup(tileJetMonAlg, 'TileJetCellEnergy', 'Tile/Jet/CellTime/') for partition in partitions: for gain in gains: energies = energiesALL[gain] for index in range(0, len(energies) + 1): toEnergy = energies[index] if index < len( energies) else 2 * energies[index - 1] fromEnergy = energies[index - 1] if index > 0 else -1000 name = 'Cell_ene_' + partition + '_' + gain + '_slice_' + str( index) title = 'Partition ' + partition + ': ' + gain + ' Tile Cell Energy' title += ' in energy range [' + str( fromEnergy) + ' .. ' + str( toEnergy) + ') MeV;Energy [MeV]' cellEnergyGroup.defineHistogram(name, title=title, path=partition, type='TH1F', xbins=100, xmin=fromEnergy, xmax=toEnergy) from TileCalibBlobObjs.Classes import TileCalibUtils as Tile if Do1DHistograms: # 7) Configure 1D histograms with Tile channel time per channel channelTime1DGroup = helper.addGroup(tileJetMonAlg, 'TileJetChanTime1D', 'Tile/Jet/ChanTime/') for ros in range(1, Tile.MAX_ROS): for module in range(0, Tile.MAX_DRAWER): for channel in range(0, Tile.MAX_CHAN): moduleName = Tile.getDrawerString(ros, module) title = 'Time in ' + moduleName + ' channel ' + str( channel) + ';time [ns];N' name = moduleName + '_ch_' + str(channel) + '_1d' path = getPartitionName(ros) + '/' + moduleName channelTime1DGroup.defineHistogram(name, title=title, path=path, type='TH1F', xbins=600, xmin=-30.0, xmax=30.0) if DoEnergyDiffHistograms: # 7) Configure 1D histograms with Tile cell relative energy difference between two channels per even channel energyDiffGroup = helper.addGroup(tileJetMonAlg, 'TileJetEnergyDiff', 'Tile/Jet/EnergyDiff/') for ros in range(1, Tile.MAX_ROS): for module in range(0, Tile.MAX_DRAWER): for channel in range(0, Tile.MAX_CHAN): if not channel % 2: for gain in gains: moduleName = Tile.getDrawerString(ros, module) title = 'Tile Cell Energy difference in ' + moduleName + ' channel ' + str( channel) + ' ' + gain title += ';#frac{ene1 - ene2}{ene1 + ene2}' name = moduleName + '_enediff_' + gain + '_ch1_' + str( channel) path = getPartitionName(ros) + '/' + moduleName energyDiffGroup.defineHistogram(name, title=title, path=path, type='TH1F', xbins=100, xmin=-1.0, xmax=1.0) accumalator = helper.result() result.merge(accumalator) return result
def TileRawChannelNoiseMonitoringConfig(flags, **kwargs): ''' Function to configure TileRawChannelNoiseMonitorAlgorithm algorithm in the monitoring system.''' # Define one top-level monitoring algorithm. The new configuration # framework uses a component accumulator. from AthenaConfiguration.ComponentAccumulator import ComponentAccumulator result = ComponentAccumulator() from TileRecUtils.TileDQstatusConfig import TileDQstatusAlgCfg result.merge(TileDQstatusAlgCfg(flags)) from TileGeoModel.TileGMConfig import TileGMCfg result.merge(TileGMCfg(flags)) from TileConditions.TileCablingSvcConfig import TileCablingSvcCfg result.merge(TileCablingSvcCfg(flags)) from TileConditions.TileBadChannelsConfig import TileBadChannelsCondAlgCfg result.merge(TileBadChannelsCondAlgCfg(flags, **kwargs)) if 'TileCondToolEmscale' not in kwargs: from TileConditions.TileEMScaleConfig import TileCondToolEmscaleCfg emScaleTool = result.popToolsAndMerge(TileCondToolEmscaleCfg(flags)) kwargs['TileCondToolEmscale'] = emScaleTool kwargs.setdefault('CheckDCS', flags.Tile.useDCS) if kwargs['CheckDCS']: from TileConditions.TileDCSConfig import TileDCSCondAlgCfg result.merge(TileDCSCondAlgCfg(flags)) #kwargs.setdefault('TriggerChain', 'HLT_noalg_cosmiccalo_L1RD1_EMPTY') #FIXME kwargs.setdefault('TriggerTypes', [0x82]) kwargs.setdefault('Gain', 1) kwargs.setdefault('TileRawChannelContainer', flags.Tile.RawChannelContainer) # The following class will make a sequence, configure algorithms, and link # them to GenericMonitoringTools from AthenaMonitoring import AthMonitorCfgHelper helper = AthMonitorCfgHelper(flags, 'TileRawChanNoiseMonitoring') # Adding an TileCellMonitorAlgorithm algorithm to the helper from AthenaConfiguration.ComponentFactory import CompFactory TileRawChannelNoiseMonitorAlgorithm = CompFactory.TileRawChannelNoiseMonitorAlgorithm tileRawChanNoiseMonAlg = helper.addAlgorithm( TileRawChannelNoiseMonitorAlgorithm, 'TileRawChanNoiseMonAlg') for k, v in kwargs.items(): setattr(tileRawChanNoiseMonAlg, k, v) run = str(flags.Input.RunNumber[0]) # 1) Configure histogram with TileRawChanNoiseMonAlg algorithm execution time executeTimeGroup = helper.addGroup(tileRawChanNoiseMonAlg, 'TileRawChanNoiseMonExecuteTime', 'Tile/') executeTimeGroup.defineHistogram( 'TIME_execute', path='RawChannelNoise', type='TH1F', title='Time for execute TileRawChanNoiseMonAlg algorithm;time [#mus]', xbins=100, xmin=0, xmax=100000) from TileCalibBlobObjs.Classes import TileCalibUtils as Tile from TileMonitoring.TileMonitoringCfgHelper import getPartitionName, getCellName, getGainName # 2) Configure histograms with Tile raw channel amplitude per channel gainName = getGainName(kwargs['Gain']) dimensions = [ int(Tile.MAX_ROS) - 1, int(Tile.MAX_DRAWER), int(Tile.MAX_CHAN) ] chanAmpArray = helper.addArray(dimensions, tileRawChanNoiseMonAlg, 'TileRawChannelNoise', topPath='Tile/RawChannelNoise') for postfix, tool in chanAmpArray.Tools.items(): ros, module, channel = [int(x) for x in postfix.split('_')[1:]] partition = getPartitionName(ros + 1) moduleName = Tile.getDrawerString(ros + 1, module) cellName = getCellName(partition, channel) title = 'Run %s %s: Tile cell %s / channel %s amplitude (%s);Amplitude [ADC]' title = title % (run, moduleName, cellName, str(channel), gainName) name = 'amplitude;TileRawChannelNoise_%s_%s_ch_%s_%s' % ( moduleName, cellName, str(channel), gainName) tool.defineHistogram(name, title=title, path=partition, type='TH1F', xbins=81, xmin=-20.25, xmax=20.25) accumalator = helper.result() result.merge(accumalator) return result
def METMonitoringConfig(inputFlags): '''Function to configures some algorithms in the monitoring system.''' ### STEP 1 ### # If you need to set up special tools, etc., you will need your own ComponentAccumulator; # uncomment the following 2 lines and use the last three lines of this function instead of the ones # just before # from AthenaConfiguration.ComponentAccumulator import ComponentAccumulator # result = ComponentAccumulator() # The following class will make a sequence, configure algorithms, and link # them to GenericMonitoringTools from AthenaMonitoring import AthMonitorCfgHelper helper = AthMonitorCfgHelper(inputFlags,'ExampleAthMonitorCfg') ### STEP 2 ### # Adding an algorithm to the helper. Here, we will use the example # algorithm in the AthenaMonitoring package. Just pass the type to the # helper. Then, the helper will instantiate an instance and set up the # base class configuration following the inputFlags. The returned object # is the algorithm. from AthenaMonitoring.AthenaMonitoringConf import ExampleMonitorAlgorithm exampleMonAlg = helper.addAlgorithm(ExampleMonitorAlgorithm,'ExampleMonAlg') # metMonTool = METMonTool(name = "METMonTool_") # exampleMonAlg = helper.addAlgorithm(metMonTool,'ExampleMonAlg') # You can actually make multiple instances of the same algorithm and give # them different configurations anotherExampleMonAlg = helper.addAlgorithm(ExampleMonitorAlgorithm,'AnotherExampleMonAlg') # # If for some really obscure reason you need to instantiate an algorithm # # yourself, the AddAlgorithm method will still configure the base # # properties and add the algorithm to the monitoring sequence. # helper.AddAlgorithm(myExistingAlg) ### STEP 3 ### # Edit properties of a algorithm # some generic property # exampleMonAlg.RandomHist = True # to enable a trigger filter, for example: exampleMonAlg.TriggerChain = 'HLT_mu26_ivarmedium' ### STEP 4 ### # Add some tools. N.B. Do not use your own trigger decion tool. Use the # standard one that is included with AthMonitorAlgorithm. # # First, add a tool that's set up by a different configuration function. # # In this case, CaloNoiseToolCfg returns its own component accumulator, # # which must be merged with the one from this function. # from CaloTools.CaloNoiseToolConfig import CaloNoiseToolCfg # caloNoiseAcc, caloNoiseTool = CaloNoiseToolCfg(inputFlags) # result.merge(caloNoiseAcc) # exampleMonAlg.CaloNoiseTool = caloNoiseTool # # Then, add a tool that doesn't have its own configuration function. In # # this example, no accumulator is returned, so no merge is necessary. # from MyDomainPackage.MyDomainPackageConf import MyDomainTool # exampleMonAlg.MyDomainTool = MyDomainTool() # Add a generic monitoring tool (a "group" in old language). The returned # object here is the standard GenericMonitoringTool. myGroup = helper.addGroup( exampleMonAlg, 'ExampleMonitor', 'OneRing/' ) # Add a GMT for the other example monitor algorithm anotherGroup = helper.addGroup(anotherExampleMonAlg,'ExampleMonitor') ### STEP 5 ### # Configure histograms # myGroup.defineHistogram( "Et;Et_" + src, title="Et Distribution (%s);MET Et (GeV);Events" % src, xbins = nEtBins, xmin = 0.0, xmax = etRange ), myGroup.defineHistogram('lumiPerBCID',title='Luminosity,WithCommaInTitle;L/BCID;Events', path='ToRuleThemAll',xbins=10,xmin=0.0,xmax=10.0) myGroup.defineHistogram('lb', title='Luminosity Block;lb;Events', path='ToFindThem',xbins=1000,xmin=-0.5,xmax=999.5,weight='testweight') # myGroup.defineHistogram('random', title='LB;x;Events', # path='ToBringThemAll',xbins=30,xmin=0,xmax=1,opt='kLBNHistoryDepth=10') # myGroup.defineHistogram('random', title='title;x;y',path='ToBringThemAll', # xbins=[0,.1,.2,.4,.8,1.6]) # myGroup.defineHistogram('random,pT', type='TH2F', title='title;x;y',path='ToBringThemAll', # xbins=[0,.1,.2,.4,.8,1.6],ybins=[0,10,30,40,60,70,90]) # myGroup.defineHistogram('pT_passed,pT',type='TEfficiency',title='Test TEfficiency;x;Eff', # path='AndInTheDarkness',xbins=100,xmin=0.0,xmax=50.0) anotherGroup.defineHistogram('lbWithFilter',title='Lumi;lb;Events', path='top',xbins=1000,xmin=-0.5,xmax=999.5) # anotherGroup.defineHistogram('run',title='Run Number;run;Events', # path='top',xbins=1000000,xmin=-0.5,xmax=999999.5) # Example defining an array of histograms. This is useful if one seeks to create a # number of histograms in an organized manner. (For instance, one plot for each ASIC # in the subdetector, and these components are mapped in eta, phi, and layer.) Thus, # one might have an array of TH1's such as quantity[etaIndex][phiIndex][layerIndex]. for alg in [exampleMonAlg,anotherExampleMonAlg]: # Using an array of groups array = helper.addArray([2],alg,'ExampleMonitor') array.defineHistogram('a,b',title='AB',type='TH2F',path='Eta', xbins=10,xmin=0.0,xmax=10.0, ybins=10,ymin=0.0,ymax=10.0) array.defineHistogram('c',title='C',path='Eta', xbins=10,xmin=0.0,xmax=10.0) array = helper.addArray([4,2],alg,'ExampleMonitor') array.defineHistogram('a',title='A',path='EtaPhi', xbins=10,xmin=0.0,xmax=10.0) # Using a map of groups layerList = ['layer1','layer2'] clusterList = ['clusterX','clusterB'] array = helper.addArray([layerList],alg,'ExampleMonitor') array.defineHistogram('c',title='C',path='Layer', xbins=10,xmin=0,xmax=10.0) array = helper.addArray([layerList,clusterList],alg,'ExampleMonitor') array.defineHistogram('c',title='C',path='LayerCluster', xbins=10,xmin=0,xmax=10.0) ### STEP 6 ### # Finalize. The return value should be a tuple of the ComponentAccumulator # and the sequence containing the created algorithms. If we haven't called # any configuration other than the AthMonitorCfgHelper here, then we can # just return directly (and not create "result" above) return helper.result()
def CscMonitoringConfig(inputFlags): '''Function to configures some algorithms in the monitoring system.''' ### STEP 1 ### # If you need to set up special tools, etc., you will need your own ComponentAccumulator; # uncomment the following 2 lines and use the last three lines of this function instead of the ones # just before from AthenaConfiguration.ComponentAccumulator import ComponentAccumulator result = ComponentAccumulator() # Make sure muon geometry is configured from MuonConfig.MuonGeometryConfig import MuonGeoModelCfg result.merge(MuonGeoModelCfg(inputFlags)) # The following class will make a sequence, configure algorithms, and link # them to GenericMonitoringTools from AthenaMonitoring import AthMonitorCfgHelper helper = AthMonitorCfgHelper(inputFlags, 'CscAthMonitorCfg') ### STEP 2 ### # Adding an algorithm to the helper. Here, we will use the example # algorithm in the AthenaMonitoring package. Just pass the type to the # helper. Then, the helper will instantiate an instance and set up the # base class configuration following the inputFlags. The returned object # is the algorithm. # This uses the new Configurables object system. cscClusMonAlg = helper.addAlgorithm(CompFactory.CscClusterValMonAlg, 'CscClusMonAlg') cscPrdMonAlg = helper.addAlgorithm(CompFactory.CscPrdValMonAlg, 'CscPrdMonAlg') # cscSegmMonAlg = helper.addAlgorithm(CompFactory.CscSegmValMonAlg,'CscSegmValMonAlg') ### STEP 3 ### # Edit properties of a algorithm # some generic property # exampleMonAlg.RandomHist = True cscClusMonAlg.CSCQmaxCutADC = 100 cscPrdMonAlg.NoiseCutADC = 50 cscPrdMonAlg.MapYXandRZ = False # to enable a trigger filter, for example: #exampleMonAlg.TriggerChain = 'HLT_mu26_ivarmedium' ### STEP 4 ### # Add some tools. N.B. Do not use your own trigger decion tool. Use the # standard one that is included with AthMonitorAlgorithm. # # Then, add a tool that doesn't have its own configuration function. In # # this example, no accumulator is returned, so no merge is necessary. # from MyDomainPackage.MyDomainPackageConf import MyDomainTool # exampleMonAlg.MyDomainTool = MyDomainTool() from MuonConfig.MuonCalibConfig import CscCalibToolCfg calibtool = result.popToolsAndMerge(CscCalibToolCfg(inputFlags)) cscClusMonAlg.CscCalibTool = calibtool from MuonConfig.MuonSegmentFindingConfig import CalibCscStripFitterCfg stripfitter = result.popToolsAndMerge(CalibCscStripFitterCfg(inputFlags)) cscClusMonAlg.CSCStripFitter = stripfitter cscPrdMonAlg.CSCStripFitter = stripfitter # Add a generic monitoring tool (a "group" in old language). The returned # object here is the standard GenericMonitoringTool. cscClusGroup = helper.addGroup(cscClusMonAlg, 'CscClusMonitor', 'Muon/MuonRawDataMonitoring/CSC/') cscPrdGroup = helper.addGroup(cscPrdMonAlg, 'CscPrdMonitor', 'Muon/MuonRawDataMonitoring/CSC/') # cscSegmGroup = helper.addGroup(cscSegmMonAlg,'CscSegmMonitor','Muon/MuonRawDataMonitoring/CSC/') ### STEP 5 ### # Configure histograms qmaxCut = str(cscClusMonAlg.CSCQmaxCutADC) #Cluster cscClusGroup.defineHistogram('z,r;h2csc_clus_r_vs_z_hitmap', type='TH2F', title='R vs. Z Cluster hitmap;z(mm);R(mm)', path='Clusters/Shift', xbins=200, xmin=-10000., xmax=10000., ybins=40, ymin=0., ymax=4000.) cscClusGroup.defineHistogram('y,x;h2csc_clus_y_vs_x_hitmap', type='TH2F', title='X vs. Y Cluster hitmap;y(mm);x(mm)', path='Clusters/Shift', xbins=100, xmin=-5000., xmax=5000., ybins=100, ymin=-5000, ymax=5000) cscClusGroup.defineHistogram( 'noStrips,secLayer;h2csc_clus_phicluswidth', type='TH2F', cutmask='clus_phi', title='Phi-Cluster width;# strips;[sector] + [0.2 #times layer]', path='Clusters/Expert', xbins=48, xmin=0, xmax=48, ybins=175, ymin=-17, ymax=18) cscClusGroup.defineHistogram( 'noStrips,secLayer;h2csc_clus_etacluswidth', type='TH2F', cutmask='clus_eta', title='Eta-Cluster width;# strips;[sector] + [0.2 #times layer]', path='Clusters/Expert', xbins=192, xmin=0, xmax=192, ybins=175, ymin=-17, ymax=18) cscClusGroup.defineHistogram( 'stripid,secLayer;h2csc_clus_hitmap', type='TH2F', title='Cluster occupancy;channel;[sector]+[0.2 #times layer]', path='Clusters/Expert', xbins=242, xmin=-49., xmax=193., ybins=175, ymin=-17., ymax=18.) cscClusGroup.defineHistogram( 'fStripIDs_col,secLayer;h2csc_clus_hitmap_signal', cutmask='signal_mon', type='TH2F', title='Cluster occupancy, Qmax > ' + qmaxCut + ' counts;channel;[sector] + [0.2 #times layer]', path='Clusters/Shift', xbins=242, xmin=-49., xmax=193., ybins=175, ymin=-17., ymax=18.) cscClusGroup.defineHistogram( 'noStrips,secLayer;h2csc_clus_phicluswidth_signal', type='TH2F', cutmask='clus_phiSig', title='#phi-cluster width, Qmax > ' + qmaxCut + ' counts;# strips;[sector] + [0.2 #times layer]', path='Clusters/Expert', xbins=48, xmin=0, xmax=48, ybins=175, ymin=-17, ymax=18) cscClusGroup.defineHistogram( 'noStrips,secLayer;h2csc_clus_etacluswidth_signal', type='TH2F', cutmask='clus_etaSig', title='#eta-cluster width, Qmax > ' + qmaxCut + ' counts;# strips;[sector] + [0.2 #times layer]', path='Clusters/Expert', xbins=192, xmin=0, xmax=192, ybins=175, ymin=-17, ymax=18) thisLabelx = getCSCLabelx("labels_clus_occupancy_signal_EA") cscClusGroup.defineHistogram('secLayer;h1csc_clus_occupancy_signal_EA', type='TH1F', cutmask='sideA', title='EndCap A: Layer occupancy, Qmax > ' + qmaxCut + ' counts;;entries/layer', path='Overview/CSCEA/Cluster', xbins=90, xmin=0, xmax=18, xlabels=thisLabelx) thisLabelx = getCSCLabelx("labels_clus_occupancy_signal_EC") cscClusGroup.defineHistogram('secLayer;h1csc_clus_occupancy_signal_EC', type='TH1F', cutmask='sideC', title='EndCap C: Layer occupancy, Qmax > ' + qmaxCut + ' counts;;entries/layer', path='Overview/CSCEC/Cluster', xbins=85, xmin=-17., xmax=0., xlabels=thisLabelx) cscClusGroup.defineHistogram( 'fStripIDs_col,secLayer;h2csc_clus_hitmap_noise', cutmask='noise_mon', type='TH2F', title='Cluster occupancy, Qmax #leq ' + qmaxCut + ' counts;channel;[sector] + [0.2 #times layer]', path='Clusters/Expert', xbins=242, xmin=-49., xmax=193., ybins=175, ymin=-17., ymax=18.) cscClusGroup.defineHistogram( 'noStrips,secLayer;h2csc_clus_phicluswidth_noise', type='TH2F', cutmask='clus_phiNoise', title='#phi-cluster width, Qmax #leq ' + qmaxCut + ' counts;# strips;[sector] + [0.2 #times layer]', path='Clusters/Expert', xbins=48, xmin=0, xmax=48, ybins=175, ymin=-17, ymax=18) cscClusGroup.defineHistogram( 'noStrips,secLayer;h2csc_clus_etacluswidth_noise', type='TH2F', cutmask='clus_etaNoise', title='#eta-cluster width, Qmax #leq ' + qmaxCut + ' counts;# strips;[sector] + [0.2 #times layer]', path='Clusters/Expert', xbins=192, xmin=0, xmax=192, ybins=175, ymin=-17, ymax=18) cscClusGroup.defineHistogram( 'QmaxADC,secLayer;h2csc_clus_qmax', type='TH2F', title= 'Cluster peak-strip charge, Qmax;counts;[sector] + [0.2 #times layer]', path='Clusters/Expert', xbins=400, xmin=0, xmax=8000, ybins=175, ymin=-17, ymax=18) cscClusGroup.defineHistogram( 'QmaxADC,secLayer;h2csc_clus_qmax_signal', cutmask='signal_mon', type='TH2F', title='Cluster peak-strip charge, Qmax > ' + qmaxCut + ' counts;counts;[sector] + [0.2 #times layer]', path='Clusters/Shift', xbins=400, xmin=0, xmax=8000, ybins=175, ymin=-17, ymax=18) cscClusGroup.defineHistogram( 'QmaxADC,secLayer;h2csc_clus_qmax_noise', cutmask='noise_mon', type='TH2F', title='Cluster peak-strip charge, Qmax #leq ' + qmaxCut + ' counts;counts;[sector] + [0.2 #times layer]', path='Clusters/Expert', xbins=400, xmin=0, xmax=8000, ybins=175, ymin=-17, ymax=18) cscClusGroup.defineHistogram( 'QmaxADC,secLayer;h2csc_clus_qmax_signal_EA', cutmask='sideA', type='TH2F', title='EndCap A: Cluster peak-strip charge, Qmax > ' + qmaxCut + ' counts;counts;[sector] + [0.2 #times layer]', path='Overview/CSCEA/Cluster', xbins=400, xmin=0, xmax=8000, ybins=90, ymin=0, ymax=18) cscClusGroup.defineHistogram( 'QmaxADC;h1csc_clus_qmax_signal_EA_count', cutmask='sideA', type='TH1F', title='EndCap A: Cluster peak-strip charge, Qmax > ' + qmaxCut + ' counts;counts;entries/20 counts;', path='Overview/CSCEA/Cluster', xbins=400, xmin=0, xmax=8000) cscClusGroup.defineHistogram( 'QmaxADC,secLayer;h2csc_clus_qmax_signal_EC', cutmask='sideC', type='TH2F', title='EndCap C: Cluster peak-strip charge, Qmax > ' + qmaxCut + ' counts;counts;[sector] + [0.2 #times layer]', path='Overview/CSCEC/Cluster', xbins=400, xmin=0, xmax=8000, ybins=90, ymin=0, ymax=18) cscClusGroup.defineHistogram( 'QmaxADC;h1csc_clus_qmax_signal_EC_count', cutmask='sideC', type='TH1F', title='EndCap C: Cluster peak-strip charge, Qmax > ' + qmaxCut + ' counts;counts;entries/20 counts;', path='Overview/CSCEC/Cluster', xbins=400, xmin=0, xmax=8000) cscClusGroup.defineHistogram( 'QsumADC,secLayer;h2csc_clus_qsum', type='TH2F', title='Cluster charge (Qsum);counts;[sector] + [0.2 #times layer]', path='Clusters/Expert', xbins=400, xmin=0, xmax=8000, ybins=175, ymin=-17, ymax=18) cscClusGroup.defineHistogram( 'QsumADC,secLayer;h2csc_clus_qsum_signal', cutmask='signal_mon', type='TH2F', title='Cluster charge(Qsum), Qmax > ' + qmaxCut + ' counts;counts;[sector] + [0.2 #times layer]', path='Clusters/Shift', xbins=400, xmin=0, xmax=8000, ybins=175, ymin=-17, ymax=18) cscClusGroup.defineHistogram( 'QsumADC,secLayer;h2csc_clus_qsum_signal_EA', cutmask='sideA', type='TH2F', title='EndCap A: Cluster charge(Qsum), Qmax > ' + qmaxCut + ' counts;counts;[sector] + [0.2 #times layer]', path='Overview/CSCEA/Cluster', xbins=400, xmin=0, xmax=8000, ybins=90, ymin=0, ymax=18) cscClusGroup.defineHistogram( 'QsumADC;h1csc_clus_qsum_signal_EA_count', cutmask='sideA', type='TH1F', title='EndCap A: Cluster charge(Qsum), Qmax > ' + qmaxCut + ' counts;counts;entries/20 counts;', path='Overview/CSCEA/Cluster', xbins=400, xmin=0, xmax=8000) cscClusGroup.defineHistogram( 'QsumADC;h2csc_clus_qsum_signal_EC', cutmask='sideC', type='TH1F', title='EndCap C: Cluster charge(Qsum), Qmax > ' + qmaxCut + ' counts;counts;[sector] + [0.2 #times layer]', path='Overview/CSCEC/Cluster', xbins=400, xmin=0, xmax=8000) cscClusGroup.defineHistogram( 'QsumADC;h1csc_clus_qsum_signal_EC_count', cutmask='sideC', type='TH1F', title='EndCap C: Cluster charge(Qsum), Qmax > ' + qmaxCut + ' counts;counts;entries/20 counts;', path='Overview/CSCEC/Cluster', xbins=400, xmin=0, xmax=8000) cscClusGroup.defineHistogram( 'QsumADC,secLayer;h2csc_clus_qsum_noise', cutmask='noise_mon', type='TH2F', title='Cluster charge(Qsum), Qmax #leq ' + qmaxCut + ' counts;counts;[sector] + [0.2 #times layer]', path='Clusters/Expert', xbins=400, xmin=0, xmax=8000, ybins=175, ymin=-17, ymax=18) cscClusGroup.defineHistogram( 'clu_time;h1csc_clus_transverse_time', cutmask='clus_phi', type='TH1F', title='#phi-cluster sampling time;ns;entries/ns', path='Clusters/Expert', xbins=260, xmin=-60, xmax=200) cscClusGroup.defineHistogram( 'clu_charge_kiloele;h1csc_clus_transverse_charge', cutmask='clus_phi', type='TH1F', title='#phi-cluster charge;counts;entries/count', path='Clusters/Expert', xbins=400, xmin=0, xmax=8000) cscClusGroup.defineHistogram('clu_time;h1csc_clus_transverse_time_signal', cutmask='clus_phiSig', type='TH1F', title='#phi-cluster sampling time, Qmax > ' + qmaxCut + ' counts;ns;entries/ns', path='Clusters/Expert', xbins=260, xmin=-60, xmax=200) cscClusGroup.defineHistogram( 'clu_charge_kiloele;h1csc_clus_transverse_charge_signal', cutmask='clus_phiSig', type='TH1F', title='#phi-cluster charge, Qmax > ' + qmaxCut + ' counts;counts;entries/count', path='Clusters/Expert', xbins=400, xmin=0, xmax=8000) cscClusGroup.defineHistogram( 'clu_time;h1csc_clus_transverse_time_noise', cutmask='clus_phiNoise', type='TH1F', title='#phi-cluster sampling time, Qmax #leq ' + qmaxCut + ' counts;ns;entries/ns', path='Clusters/Expert', xbins=260, xmin=-60, xmax=200) cscClusGroup.defineHistogram( 'clu_charge_kiloele;h1csc_clus_transverse_charge_noise', cutmask='clus_phiNoise', type='TH1F', title='#phi-cluster charge, Qmax #leq ' + qmaxCut + ' counts;counts;entries/count', path='Clusters/Expert', xbins=400, xmin=0, xmax=8000) cscClusGroup.defineHistogram( 'clu_time;h1csc_clus_precision_time', cutmask='clus_eta', type='TH1F', title='#eta-cluster sampling time;ns;entries/ns', path='Clusters/Expert', xbins=260, xmin=-60, xmax=200) cscClusGroup.defineHistogram( 'clu_charge_kiloele;h1csc_clus_precision_charge', cutmask='clus_eta', type='TH1F', title='eta-cluster charge;counts;entries/count', path='Clusters/Expert', xbins=400, xmin=0, xmax=8000) cscClusGroup.defineHistogram('clu_time;h1csc_clus_precision_time_signal', cutmask='clus_etaSig', type='TH1F', title='#eta-cluster sampling time, Qmax > ' + qmaxCut + ' counts;ns;entries/ns', path='Clusters/Shift', xbins=260, xmin=-60, xmax=200) cscClusGroup.defineHistogram( 'clu_charge_kiloele;h1csc_clus_precision_charge_signal', cutmask='clus_etaSig', type='TH1F', title='#eta-cluster charge, Qmax > ' + qmaxCut + ' counts;counts;entries/count', path='Clusters/Expert', xbins=400, xmin=0, xmax=8000) cscClusGroup.defineHistogram( 'clu_time;h1csc_clus_precision_time_signal_EA', cutmask='sideA', type='TH1F', title='EndCap A: #eta-cluster sampling time, Qmax > ' + qmaxCut + ' counts;ns;entries/ns', path='Overview/CSCEA/Cluster', xbins=260, xmin=-60, xmax=200) cscClusGroup.defineHistogram( 'clu_time;h1csc_clus_precision_time_signal_EC', cutmask='sideC', type='TH1F', title='EndCap C: #eta-cluster sampling time, Qmax > ' + qmaxCut + ' counts;ns;entries/ns', path='Overview/CSCEC/Cluster', xbins=260, xmin=-60, xmax=200) cscClusGroup.defineHistogram( 'clu_time;h1csc_clus_precision_time_noise', cutmask='clus_etaNoise', type='TH1F', title='#eta-cluster sampling time, Qmax #leq ' + qmaxCut + ' counts;ns;entries/ns', path='Clusters/Expert', xbins=260, xmin=-60, xmax=200) cscClusGroup.defineHistogram( 'clu_charge_kiloele;h1csc_clus_precision_charge_noise', cutmask='clus_etaNoise', type='TH1F', title='#eta-cluster charge, Qmax #leq ' + qmaxCut + ' counts;counts;entries/count', path='Clusters/Expert', xbins=400, xmin=0, xmax=8000) cscClusGroup.defineHistogram( 'stripsSum_EA_mon;h1csc_clus_totalWidth_EA', type='TH1F', title= 'EndCap A: Cluster hits in all EA eta(#eta) & phi(#phi) strips;strips;cluster hits', path='Overview/CSCEA/Cluster', xbins=15360, xmin=1., xmax=15361.) cscClusGroup.defineHistogram( 'stripsSum_EC_mon;h1csc_clus_totalWidth_EC', type='TH1F', title= 'EndCap C: Cluster hits in all EC eta(#eta) & phi(#phi) strips;strips;cluster hits', path='Overview/CSCEC/Cluster', xbins=15360, xmin=1., xmax=15361.) cscClusGroup.defineHistogram( 'nPhiClusWidthCnt_mon,nEtaClusWidthCnt_mon;h2csc_clus_eta_vs_phi_cluswidth', type='TH2F', title= 'Eta vs. Phi Cluster width correlation;#varphi-cluster width;#eta-cluster width', path='Clusters/Expert', xbins=100, xmin=0, xmax=100, ybins=100, ymin=0, ymax=100) cscClusGroup.defineHistogram( 'count_mon,secLayer;h2csc_clus_phicluscount', cutmask='mphi_true', type='TH2F', title='#phi-cluster count;# clusters;[sector] + [0.2 #times layer]', path='Clusters/Expert', xbins=20, xmin=0, xmax=20, ybins=175, ymin=-17., ymax=18.) cscClusGroup.defineHistogram( 'scount_mon,secLayer;h2csc_clus_phicluscount_signal', cutmask='scount_phi_true', type='TH2F', title='#phi-cluster count;# clusters;[sector] + [0.2 #times layer]', path='Clusters/Expert', xbins=20, xmin=0, xmax=20, ybins=175, ymin=-17., ymax=18.) cscClusGroup.defineHistogram( 'count_diff,secLayer;h2csc_clus_phicluscount_noise', cutmask='scount_phi_false', type='TH2F', title='#phi-cluster count, Qmax #leq ' + qmaxCut + ' counts;# clusters;[sector] + [0.2 #times layer]', path='Clusters/Expert', xbins=20, xmin=0, xmax=20, ybins=175, ymin=-17., ymax=18.) cscClusGroup.defineHistogram( 'count_mon,secLayer;h2csc_clus_etacluscount', cutmask='mphi_false', type='TH2F', title='#eta-cluster count;# clusters;[sector] + [0.2 #times layer]', path='Clusters/Expert', xbins=20, xmin=0, xmax=20, ybins=175, ymin=-17., ymax=18.) cscClusGroup.defineHistogram( 'scount_mon,secLayer;h2csc_clus_etacluscount_signal', cutmask='scount_eta_true', type='TH2F', title='#eta-cluster count;# clusters;[sector] + [0.2 #times layer]', path='Clusters/Expert', xbins=20, xmin=0, xmax=20, ybins=175, ymin=-17., ymax=18.) cscClusGroup.defineHistogram( 'count_diff,secLayer;h2csc_clus_etacluscount_noise', cutmask='scount_eta_false', type='TH2F', title='#eta-cluster count, Qmax #leq ' + qmaxCut + ' counts;# clusters;[sector] + [0.2 #times layer]', path='Clusters/Expert', xbins=20, xmin=0, xmax=20, ybins=175, ymin=-17., ymax=18.) cscClusGroup.defineHistogram( 'segNum_mon,sec_mon;h2csc_clus_segmap_signal', type='TH2F', title='Segment occupancy, Qmax > ' + qmaxCut + ' counts;segment;[sector] + [0.2 #times layer]', path='Clusters/Expert', xbins=16, xmin=-0.5, xmax=15.5, ybins=175, ymin=-17., ymax=18.) cscClusGroup.defineHistogram( 'numphi_numeta_mon;h1csc_clus_count', type='TH1F', title='Clusters per event;no.of clusters;entries', path='Clusters/Expert', xbins=26, xmin=-1, xmax=25) cscClusGroup.defineHistogram( 'numphi_numeta_sig_mon;h1csc_clus_count_signal', type='TH1F', title='Clusters per event, Qmax > ' + qmaxCut + ' counts;no.of clusters;entries', path='Clusters/Expert', xbins=26, xmin=-1, xmax=25) cscClusGroup.defineHistogram('num_num_noise_mon;h1csc_clus_count_noise', type='TH1F', title='Clusters per event, Qmax #leq ' + qmaxCut + ' counts;no.of clusters;entries', path='Clusters/Expert', xbins=26, xmin=-1, xmax=25) cscClusGroup.defineHistogram( 'numphi_mon,numeta_mon;h2csc_clus_eta_vs_phi_cluscount', type='TH2F', title= 'Eta vs. Phi Cluster count correlation;#varphi-cluster count;#eta-cluster count', path='Clusters/Expert', xbins=100, xmin=0, xmax=100, ybins=100, ymin=0, ymax=100) cscClusGroup.defineHistogram( 'numphi_sig_mon,numeta_sig_mon;h2csc_clus_eta_vs_phi_cluscount_signal', type='TH2F', title= 'Eta vs. Phi Signal-Cluster count correlation;#varphi-cluster count;#eta-cluster count', path='Clusters/Expert', xbins=100, xmin=0, xmax=100, ybins=100, ymin=0, ymax=100) cscClusGroup.defineHistogram( 'numphi_diff_mon,numeta_diff_mon;h2csc_clus_eta_vs_phi_cluscount_noise', type='TH2F', title= 'Eta vs. Phi Noise-Cluster count correlation;#varphi-cluster count;#eta-cluster count', path='Clusters/Expert', xbins=100, xmin=0, xmax=100, ybins=100, ymin=0, ymax=100) #PRD cscPrdGroup.defineHistogram( 'spid, secLayer;h2csc_prd_hitmap', type='TH2F', title='Hit Occupancy; channel; [sector] + [0.2 #times layer]', path='PRD/Expert', xbins=242, xmin=-49., xmax=193., ybins=175, ymin=-17., ymax=18.) cscPrdGroup.defineHistogram( 'noStrips,secLayer;h2csc_prd_phicluswidth', type='TH2F', cutmask='measphi', title= 'PRD precision-cluster width;no.of strips;[sector] + [0.2 #times layer]', path='PRD/Expert', xbins=48, xmin=0, xmax=48, ybins=175, ymin=-17., ymax=18.) cscPrdGroup.defineHistogram( 'noStrips,secLayer;h2csc_prd_etacluswidth', type='TH2F', cutmask='measeta', title= 'PRD precision-cluster width;no.of strips;[sector] + [0.2 #times layer]', path='PRD/Expert', xbins=192, xmin=0, xmax=192, ybins=175, ymin=-17., ymax=18.) cscPrdGroup.defineHistogram('z,r;h2csc_prd_r_vs_z_hitmap', type='TH2F', title='R vs. Z Cluster hitmap;z(mm);R(mm)', path='PRD/Shift', xbins=200, xmin=-10000., xmax=10000., ybins=40, ymin=0., ymax=4000.) cscPrdGroup.defineHistogram('y,x;h2csc_prd_y_vs_x_hitmap', type='TH2F', title='Y vs. X Cluster hitmap;x(mm);y(mm)', path='PRD/Shift', xbins=100, xmin=-5000., xmax=5000., ybins=100, ymin=-5000., ymax=5000.) cscPrdGroup.defineHistogram( 'spid,secLayer;h2csc_prd_hitmap_signal', cutmask='signal_mon', type='TH2F', title='Signal Occupancy;channel;[sector] + [0.2 #times layer]', path='PRD/Shift', xbins=242, xmin=-49., xmax=193., ybins=175, ymin=-17., ymax=18.) cscPrdGroup.defineHistogram( 'spid,secLayer;h2csc_prd_hitmap_signal_EC', cutmask='sideC', type='TH2F', title= 'EndCap C: Signal Occupancy;channel;[sector] + [0.2 #times layer]', path='Overview/CSCEC/PRD', xbins=242, xmin=-49., xmax=193., ybins=85, ymin=-17., ymax=0.) cscPrdGroup.defineHistogram( 'spid;h1csc_prd_hitmap_signal_EC_count', cutmask='sideC', type='TH1F', title='EndCap C: Signal Occupancy;channel;entries/channel;', path='Overview/CSCEC/PRD', xbins=242, xmin=-49., xmax=193.) thisLabelx = getCSCLabelx("labels_clus_occupancy_signal_EC") cscPrdGroup.defineHistogram( 'secLayer;h1csc_prd_hitmap_signal_EC_occupancy', cutmask='sideC', type='TH1F', title='EndCap C: Signal Occupancy;;entries/layer', path='Overview/CSCEC/PRD', xbins=85, xmin=-17., xmax=0., xlabels=thisLabelx) #labels cscPrdGroup.defineHistogram( 'lumiblock_mon,secLayer;h2csc_prd_occvslb_EC', cutmask='sideC', type='TH2F', title= 'EndCap C: Layer Signal Occupancy Per LB;LB;[sector] + [0.2 #times layer]', path='Overview/CSCEC/PRD', xbins=2510, xmin=-10., xmax=2500., ybins=85, ymin=-17., ymax=0.) cscPrdGroup.defineHistogram( 'spid,secLayer;h2csc_prd_hitmap_signal_EA', cutmask='sideA', type='TH2F', title= 'EndCap A: Signal Occupancy;channel;[sector] + [0.2 #times layer]', path='Overview/CSCEA/PRD', xbins=242, xmin=-49., xmax=193., ybins=90, ymin=0., ymax=18.) cscPrdGroup.defineHistogram( 'spid;h1csc_prd_hitmap_signal_EA_count', cutmask='sideA', type='TH1F', title='EndCap A: Signal Occupancy;channel;entries/channel;', path='Overview/CSCEA/PRD', xbins=242, xmin=-49., xmax=193.) thisLabelx = getCSCLabelx("labels_clus_occupancy_signal_EA") cscPrdGroup.defineHistogram( 'secLayer;h1csc_prd_hitmap_signal_EA_occupancy', cutmask='sideA', type='TH1F', title='EndCap A: Signal Occupancy;;entries/layer', path='Overview/CSCEA/PRD', xbins=90, xmin=0., xmax=18., xlabels=thisLabelx) #labels cscPrdGroup.defineHistogram( 'lumiblock_mon,secLayer;h2csc_prd_occvslb_EA', cutmask='sideA', type='TH2F', title= 'EndCap A: Layer Signal Occupancy Per LB;LB;[sector] + [0.2 #times layer]', path='Overview/CSCEA/PRD', xbins=2510, xmin=-10., xmax=2500., ybins=90, ymin=0., ymax=18.) cscPrdGroup.defineHistogram( 'noStrips,secLayer;h2csc_prd_etacluswidth_signal', cutmask='clus_etaSig', type='TH2F', title= 'PRD precision-cluster width;no.of strips;[sector] + [0.2 #times layer]', path='PRD/Expert', xbins=192, xmin=0., xmax=192., ybins=175, ymin=-17., ymax=18.) cscPrdGroup.defineHistogram( 'noStrips,secLayer;h2csc_prd_phicluswidth_signal', cutmask='clus_phiSig', type='TH2F', title= 'PRD precision-cluster width;no.of strips;[sector] + [0.2 #times layer]', path='PRD/Expert', xbins=48, xmin=0., xmax=48., ybins=175, ymin=-17., ymax=18.) cscPrdGroup.defineHistogram( 'spid,secLayer;h2csc_prd_hitmap_noise', cutmask='noise_mon', type='TH2F', title='Noise Occupancy;channel;[sector] + [0.2 #times layer]', path='PRD/Expert', xbins=242, xmin=-49., xmax=193., ybins=175, ymin=-17., ymax=18.) cscPrdGroup.defineHistogram( 'noStrips,secLayer;h2csc_prd_etacluswidth_noise', cutmask='clus_etaNoise', type='TH2F', title= 'PRD precision-cluster width;no.of strips;[sector] + [0.2 #times layer]', path='PRD/Expert', xbins=192, xmin=0., xmax=192., ybins=175, ymin=-17., ymax=18.) cscPrdGroup.defineHistogram( 'noStrips,secLayer;h2csc_prd_phicluswidth_noise', cutmask='clus_phiNoise', type='TH2F', title= 'PRD precision-cluster width;no.of strips;[sector] + [0.2 #times layer]', path='PRD/Expert', xbins=48, xmin=0., xmax=48., ybins=175, ymin=-17., ymax=18.) cscPrdGroup.defineHistogram( 'count_mon,secLayer;h2csc_prd_phicluscount', cutmask='mphi_true', type='TH2F', title= 'PRD transverse-cluster count;no.of clusters;[sector] + [0.2 #times layer]', path='PRD/Expert', xbins=20, xmin=0., xmax=20., ybins=175, ymin=-17., ymax=18.) cscPrdGroup.defineHistogram( 'scount_mon,secLayer;h2csc_prd_phicluscount_signal', cutmask='scount_phi_true', type='TH2F', title= 'PRD transverse-cluster count;no.of clusters;[sector] + [0.2 #times layer]', path='PRD/Shift', xbins=20, xmin=0., xmax=20., ybins=175, ymin=-17., ymax=18.) cscPrdGroup.defineHistogram( 'tmp_val_mon,secLayer;h2csc_prd_phicluscount_noise', cutmask='mphi_true', type='TH2F', title= 'PRD transverse-cluster count;no.of clusters;[sector] + [0.2 #times layer]', path='PRD/Expert', xbins=20, xmin=0., xmax=20., ybins=175, ymin=-17., ymax=18.) cscPrdGroup.defineHistogram( 'count_mon,secLayer;h2csc_prd_etacluscount', cutmask='mphi_false', type='TH2F', title= 'PRD precision-cluster count;no.of clusters;[sector] + [0.2 #times layer]', path='PRD/Expert', xbins=20, xmin=0., xmax=20., ybins=175, ymin=-17., ymax=18.) cscPrdGroup.defineHistogram( 'scount_mon,secLayer;h2csc_prd_etacluscount_signal', cutmask='scount_eta_true', type='TH2F', title= 'PRD precision-cluster count;no.of clusters;[sector] + [0.2 #times layer]', path='PRD/Shift', xbins=20, xmin=0., xmax=20., ybins=175, ymin=-17., ymax=18.) cscPrdGroup.defineHistogram( 'tmp_val_mon,secLayer;h2csc_prd_etacluscount_noise', cutmask='mphi_false', type='TH2F', title= 'PRD precision-cluster count;no.of clusters;[sector] + [0.2 #times layer]', path='PRD/Expert', xbins=20, xmin=0., xmax=20., ybins=175, ymin=-17., ymax=18.) cscPrdGroup.defineHistogram( 'numphi_mon,numeta_mon;h2csc_prd_eta_vs_phi_cluscount', type='TH2F', title= 'Eta vs. Phi Cluster count correlation;#varphi-cluster count;#eta-cluster count', path='PRD/Expert', xbins=100, xmin=0, xmax=100, ybins=100, ymin=0, ymax=100) cscPrdGroup.defineHistogram( 'numphi_sig_mon,numeta_sig_mon;h2csc_prd_eta_vs_phi_cluscount_signal', type='TH2F', title= 'Eta vs. Phi Signal-Cluster count correlation;#varphi-cluster count;#eta-cluster count', path='PRD/Expert', xbins=100, xmin=0, xmax=100, ybins=100, ymin=0, ymax=100) cscPrdGroup.defineHistogram( 'numphi_diff_mon,numeta_diff_mon;h2csc_prd_eta_vs_phi_cluscount_noise', type='TH2F', title= 'Eta vs. Phi Noise-Cluster count correlation;#varphi-cluster count;#eta-cluster count', path='PRD/Expert', xbins=100, xmin=0, xmax=100, ybins=100, ymin=0, ymax=100) cscClusGroup.defineHistogram( 'nPhiClusWidthCnt_mon,nEtaClusWidthCnt_mon;h2csc_prd_eta_vs_phi_cluswidth', type='TH2F', title= 'Eta vs. Phi Cluster width correlation;#varphi-cluster width;#eta-cluster width', path='PRD/Expert', xbins=100, xmin=0, xmax=100, ybins=100, ymin=0, ymax=100) #myGroup.defineHistogram('lb', title='Luminosity Block;lb;Events', # path='ToFindThem',xbins=1000,xmin=-0.5,xmax=999.5,weight='testweight') #myGroup.defineHistogram('random', title='LB;x;Events', # path='ToBringThemAll',xbins=30,xmin=0,xmax=1,opt='kLBNHistoryDepth=10') #myGroup.defineHistogram('random', title='title;x;y',path='ToBringThemAll', # xbins=[0,.1,.2,.4,.8,1.6]) ##myGroup.defineHistogram('random,pT', type='TH2F', title='title;x;y',path='ToBringThemAll', # xbins=[0,.1,.2,.4,.8,1.6],ybins=[0,10,30,40,60,70,90]) # TEfficiencies ##myGroup.defineHistogram('pT_passed,pT', type='TEfficiency', title='Test TEfficiency;x;Eff', # path='AndInTheDarkness', xbins=100, xmin=0.0, xmax=50.0) #myGroup.defineHistogram('pT_passed,pT,random', type='TEfficiency', title='Test TEfficiency 2D;x;y;Eff', # path='AndInTheDarkness', xbins=100, xmin=0.0, xmax=50.0, # ybins=10, ymin=0.0, ymax=2.0) # # use a cutmask to only fill certain events #myGroup.defineHistogram('pT;pT_with_cut', title='p_{T};p_{T};Events', path='AndInTheDarkness', # xbins=50, xmin=0, xmax=50, cutmask='pT_passed') # make a TTree #myGroup.defineTree('pT,lb,pT_vec,strvec,str;testtree', path='BindThem', # treedef='pT/F:lb/i:pT_vec/vector<float>:strvec/vector<string>:str/string') #anotherGroup.defineHistogram('lbWithFilter',title='Lumi;lb;Events', # path='top',xbins=1000,xmin=-0.5,xmax=999.5) #anotherGroup.defineHistogram('run',title='Run Number;run;Events', # path='top',xbins=1000000,xmin=-0.5,xmax=999999.5) # Example defining an array of histograms. This is useful if one seeks to create a # number of histograms in an organized manner. (For instance, one plot for each ASIC # in the subdetector, and these components are mapped in eta, phi, and layer.) Thus, # one might have an array of TH1's such as quantity[etaIndex][phiIndex][layerIndex]. # for alg in [exampleMonAlg,anotherExampleMonAlg]: # Using an array of groups # topPath = 'OneRing' if alg == exampleMonAlg else '' # array = helper.addArray([2],alg,'ExampleMonitor', topPath=topPath) # array.defineHistogram('a,b',title='AB',type='TH2F',path='Eta', # xbins=10,xmin=0.0,xmax=10.0, # ybins=10,ymin=0.0,ymax=10.0) # array.defineHistogram('c',title='C',path='Eta', # xbins=10,xmin=0.0,xmax=10.0) # array = helper.addArray([4,2],alg,'ExampleMonitor', topPath=topPath) # array.defineHistogram('a',title='A',path='EtaPhi', # xbins=10,xmin=0.0,xmax=10.0) # Using a map of groups # layerList = ['layer1','layer2'] # clusterList = ['clusterX','clusterB'] # array = helper.addArray([layerList],alg,'ExampleMonitor', topPath=topPath) # array.defineHistogram('c',title='C',path='Layer', # xbins=10,xmin=0,xmax=10.0) # array = helper.addArray([layerList,clusterList],alg,'ExampleMonitor', topPath=topPath) # array.defineHistogram('c',title='C',path='LayerCluster', # xbins=10,xmin=0,xmax=10.0) ### STEP 6 ### # Finalize. The return value should be a tuple of the ComponentAccumulator # and the sequence containing the created algorithms. If we haven't called # any configuration other than the AthMonitorCfgHelper here, then we can # just return directly (and not create "result" above) #return helper.result() # # Otherwise, merge with result object and return acc = helper.result() result.merge(acc) return result
def TRTMonitoringRun3ESD_AlgConfig(inputFlags): '''Function to configures some algorithms in the monitoring system.''' from AthenaConfiguration.ComponentAccumulator import ComponentAccumulator result = ComponentAccumulator() from TrkConfig.TrackCollectionReadConfig import TrackCollectionReadCfg result.merge (TrackCollectionReadCfg (inputFlags, 'CombinedInDetTracks')) result.merge (TrackCollectionReadCfg (inputFlags, 'Tracks')) from AthenaMonitoring import AthMonitorCfgHelper helper = AthMonitorCfgHelper(inputFlags, 'TRTMonitoringCfg') from AthenaConfiguration.ComponentFactory import CompFactory algTRTMonitoringRun3ESD = helper.addAlgorithm(CompFactory.TRTMonitoringRun3ESD_Alg, 'AlgTRTMonitoringRun3') from AtlasGeoModel.AtlasGeoModelConfig import AtlasGeometryCfg result.merge(AtlasGeometryCfg(inputFlags)) from IOVDbSvc.IOVDbSvcConfig import addFoldersSplitOnline result.merge(addFoldersSplitOnline(inputFlags, "TRT","/TRT/Onl/Calib/errors2d","/TRT/Calib/errors2d",className="TRTCond::RtRelationMultChanContainer")) result.merge(addFoldersSplitOnline(inputFlags, "TRT","/TRT/Onl/Calib/slopes","/TRT/Calib/slopes",className="TRTCond::RtRelationMultChanContainer")) result.merge(addFoldersSplitOnline(inputFlags, "TRT","/TRT/Onl/Calib/RT","/TRT/Calib/RT",className="TRTCond::RtRelationMultChanContainer")) result.merge(addFoldersSplitOnline(inputFlags, "TRT","/TRT/Onl/Calib/T0","/TRT/Calib/T0",className="TRTCond::StrawT0MultChanContainer")) ############################## WORKAROUND (START) ########################## from SCT_Monitoring.TrackSummaryToolWorkaround import TrackSummaryToolWorkaround algTRTMonitoringRun3ESD.TrackSummaryTool = result.popToolsAndMerge(TrackSummaryToolWorkaround(inputFlags)) ############################## WORKAROUND (END) ############################ barrelOrEndcap = ('Barrel', 'EndCap') beId = ('B', 'E') sideId = ('A', 'C') strawMax = (1642, 3840) iChipMax = (104, 240) numberOfStacks = (32, 32) distToStraw = 0.4 nPhiBins = 360 minTRTHits = 10 for ibe in range(2): oss_distance = distToStraw distance = str(oss_distance) regionTag = ' (' + barrelOrEndcap[ibe] + ')' for i in range(numberOfStacks[ibe]*2): trackGroup = helper.addGroup(algTRTMonitoringRun3ESD,'TRTTrackHistograms{0}{1}'.format(ibe,i)) nBarrelModules = 0 if ibe == 0: if i < numberOfStacks[ibe]: nBarrelModules = i + 1 oss = 'TRT/Barrel/Stack{0}A'.format(nBarrelModules) elif i >= numberOfStacks[ibe]: nBarrelModules = i + 1 - 32 oss = 'TRT/Barrel/Stack{0}C'.format(nBarrelModules) elif ibe == 1: if i < numberOfStacks[ibe]: nBarrelModules = i + 1 oss = 'TRT/EndcapA/Sector{0}'.format(nBarrelModules) elif i >= numberOfStacks[ibe]: nBarrelModules = i + 1 - 32 oss = 'TRT/EndcapC/Sector{0}'.format(nBarrelModules) trackGroup.defineHistogram('HitTronTMapS_x,HitTronTMapS_y;hHitTronTMapS',type='TProfile',title='Mean Trailing Edge on Track: Straws;Straw Number in Stack;Time (ns)',path=oss,xbins=strawMax[ibe],xmin=0,xmax=strawMax[ibe],duration='run') trackGroup.defineHistogram('HitToTonTMapS_x,HitToTonTMapS_y;hHitToTonTMapS',type='TProfile',title='Mean ToT on Track: Straws;Straw Number in Stack;Time (ns)',path=oss,xbins=strawMax[ibe],xmin=0,xmax=strawMax[ibe],duration='run') trackGroup.defineHistogram('ValidRawDriftTimeonTrkS_x,ValidRawDriftTimeonTrkS_y;hValidRawDriftTimeonTrk',type='TProfile',title='Valid Raw Drift Time on Track: Straws;Straw Number in Stack;Time (ns)',path=oss,xbins=strawMax[ibe],xmin=0,xmax=strawMax[ibe],duration='run') trackGroup.defineHistogram('HitTronTwEPCMapS_x,HitTronTwEPCMapS_y;hHitTronTwEPCMapS',type='TProfile',title='Mean Trailing Edge on Track (with Event Phase Correction): Straws;Straw Number in Stack;Time (ns)',path=oss,xbins=strawMax[ibe],xmin=0,xmax=strawMax[ibe],duration='run') trackGroup.defineHistogram('HitTronTMapC_x,HitTronTMapC_y;hHitTronTMapC',type='TProfile',title='Mean Trailing Edge on Track: Chips;Chip Number in Stack;Time (ns)',path=oss,xbins=iChipMax[ibe],xmin=0,xmax=iChipMax[ibe],duration='run') trackGroup.defineHistogram('HitToTonTMapC_x,HitToTonTMapC_y;hHitToTonTMapC',type='TProfile',title='Chip Number in Stack;Time (ns);Chip Number in Stack;Time (ns)',path=oss,xbins=iChipMax[ibe],xmin=0,xmax=iChipMax[ibe],duration='run') trackGroup.defineHistogram('ValidRawDriftTimeonTrkC_x,ValidRawDriftTimeonTrkC_y;hValidRawDriftTimeonTrkC',type='TProfile',title='Valid Raw Drift Time on Track: Chips;Chip Number in Stack;Time (ns)',path=oss,xbins=iChipMax[ibe],xmin=0,xmax=iChipMax[ibe],duration='run') trackGroup.defineHistogram('HitTronTwEPCMapC_x,HitTronTwEPCMapC_y;hHitTronTwEPCMapC',type='TProfile',title='Mean Trailing Edge on Track (with Event Phase Correction): Chips;Chip Number in Stack;Time (ns)',path=oss,xbins=iChipMax[ibe],xmin=0,xmax=iChipMax[ibe],duration='run') # Arrays for Aging gas = ('in_A', 'in_B', 'out_A', 'out_B') Mod = ('1', '2', '3', 'shortP', 'shortN') for ibe in range(2): shiftTrackGroup = helper.addGroup(algTRTMonitoringRun3ESD,'ShiftTRTTrackHistograms{0}'.format(ibe)) regionTag = ' (' + barrelOrEndcap[ibe] + ')' if ibe == 0: shiftTrackGroup.defineHistogram('EvtPhase;hEvtPhase',type='TH1F',title='Event Phase Correction Factor;Event Phase (ns);Entries',path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=200,xmin=-50,xmax=50) shiftTrackGroup.defineHistogram('EvtPhaseVsTrig_x,EvtPhaseVsTrig_y;hEvtPhaseVsTrig',type='TH2F',title='Event Phase vs L1 Trigger Item;Event Phase (ns);L1 Trigger Item',path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=300,xmin=-200,xmax=100,ybins=256,ymin=-0.5,ymax=255.5,duration='run') shiftTrackGroup.defineHistogram('EvtPhaseDetPhi_B_x,EvtPhaseDetPhi_B_y;hEvtPhaseDetPhi',type='TProfile',title='Event Phase vs #phi (2D){0};#phi (deg);Event Phase from Tracks per Event'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=nPhiBins,xmin=0.,xmax=360.,duration='run') shiftTrackGroup.defineHistogram('RtRelation_B_x,RtRelation_B_y;hrtRelation',type='TH2F',title='R(t) Relation for Xenon Straws{0};Measured Leading Edge (ns);Track-to-Wire Distance (mm)'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=30,xmin=-12.5,xmax=81.25,ybins=50,ymin=0.,ymax=2.5,duration='run') shiftTrackGroup.defineHistogram('NumHoTDetPhi_B_x,NumHoTDetPhi_B_y;hNumHoTDetPhi',type='TProfile',title='Number of Hits per Track with {0} mm Cut vs #phi{1};#phi (deg);Hits per Track, TRT Hits >= {2}'.format(distance,regionTag,minTRTHits),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=nPhiBins,xmin=0.,xmax=360.,duration='run') shiftTrackGroup.defineHistogram('TronTDist_B;hTronTDist',type='TH1F',title='Trailing Edge Distribution on Track for Xenon Straws{0};Trailing Edge (ns);Entries'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=26,xmin=-0.5,xmax=80.75,duration='run') shiftTrackGroup.defineHistogram('DriftTimeonTrkDist_B;hDriftTimeonTrkDist',type='TH1F',title='Drift Time Distribution on Track for Xenon Straws{0};Drift Time (ns);Entries'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=32,xmin=0,xmax=100,duration='run') shiftTrackGroup.defineHistogram('NumTrksDetPhi_B;hNumTrksDetPhi_B',type='TH1F',title='Number of Reconstructed Tracks vs #phi (2D){0};#phi (deg);Number of Tracks'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=60,xmin=0,xmax=360,duration='run') shiftTrackGroup.defineHistogram('DriftTimeonTrkDist_B_Ar;hDriftTimeonTrkDist_Ar',type='TH1F',title='Drift Time Distribution on Track for Argon Straws{0};Drift Time (ns);Entries'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=32,xmin=0,xmax=100,duration='run') shiftTrackGroup.defineHistogram('TronTDist_B_Ar;hTronTDist_Ar',type='TH1F',title='Trailing Edge Distribution on Track for Argon Straws{0};Trailing Edge (ns);Entries'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=26,xmin=-0.5,xmax=80.75,duration='run') shiftTrackGroup.defineHistogram('RtRelation_B_Ar_x,RtRelation_B_Ar_y;hrtRelation_Ar',type='TH2F',title='R(t) Relation for Argon Straws{0};Measured Leading Edge (ns);Track-to-Wire Distance (mm)'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=30,xmin=-12.5,xmax=81.25,ybins=50,ymin=0,ymax=2.5,duration='run') shiftTrackGroup.defineHistogram('Pull_Biased_Barrel;hPull_Biased_Barrel',type='TH1F',title='Biased Track Pulls for Barrel Hits;Pulls;Entries',path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=200,xmin=-2.5,xmax=2.5,duration='run') shiftTrackGroup.defineHistogram('Residual_B_Ar;hResidual_Ar',type='TH1F',title='Residuals for Argon Straws{0};Hit-to-Track Distance (mm);Entries'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=200,xmin=-2.5,xmax=2.5,duration='lowStat') shiftTrackGroup.defineHistogram('Residual_B_Ar;hResidual_Ar',type='TH1F',title='Residuals for Argon Straws{0};Hit-to-Track Distance (mm);Entries'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=200,xmin=-2.5,xmax=2.5,duration='run') shiftTrackGroup.defineHistogram('Residual_B_Ar_20GeV;hResidual_Ar_20GeV',type='TH1F',title='Residuals for Argon Straws{0} (After 20GeV pT cut);Hit-to-Track Distance (mm);Entries'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=200,xmin=-2.5,xmax=2.5,duration='run') shiftTrackGroup.defineHistogram('AvgTroTDetPhi_B_Ar_x,AvgTroTDetPhi_B_Ar_y;hAvgTroTDetPhi_Ar',type='TProfile',title='Avg. Trailing Edge on Track vs #phi (2D) for Argon{0};#phi (deg);Trailing Edge (ns)'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=nPhiBins,xmin=0,xmax=360,duration='run') shiftTrackGroup.defineHistogram('TimeResidual_B_Ar;hTimeResidual_Ar',type='TH1F',title='Time Residuals for Argon Straws{0};Time Residual (ns);Entries'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=200,xmin=-20,xmax=20,duration='run') shiftTrackGroup.defineHistogram('WireToTrkPosition_B_Ar;hWireToTrkPosition_Ar',type='TH1F',title='Track-to-Wire Distance for Argon{0};Track-to-Wire Distance (mm);Entries'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=100,xmin=-5,xmax=5,duration='run') shiftTrackGroup.defineHistogram('Residual_B;hResidual_Xe',type='TH1F',title='Residuals for Xenon Straws{0};Hit-to-Track Distance (mm);Entries'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=200,xmin=-2.5,xmax=2.5,duration='lowStat') shiftTrackGroup.defineHistogram('Residual_B;hResidual_Xe',type='TH1F',title='Residuals for Xenon Straws{0};Hit-to-Track Distance (mm);Entries'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=200,xmin=-2.5,xmax=2.5,duration='run') shiftTrackGroup.defineHistogram('Residual_B_20GeV;hResidual_Xe_20GeV',type='TH1F',title='Residuals for Xenon Straws{0} (After 20GeV pT cut);Hit-to-Track Distance (mm);Entries'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=200,xmin=-2.5,xmax=2.5,duration='run') shiftTrackGroup.defineHistogram('TimeResidual_B;hTimeResidual',type='TH1F',title='Time Residuals for Xenon Straws{0};Time Residual (ns);Entries'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=200,xmin=-20,xmax=20,duration='run') shiftTrackGroup.defineHistogram('WireToTrkPosition_B;hWireToTrkPosition',type='TH1F',title='Track-to-Wire Distance for Xenon{0};Track-to-Wire Distance (mm);Entries'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=100,xmin=-5,xmax=5,duration='run') shiftTrackGroup.defineHistogram('AvgTroTDetPhi_B_x,AvgTroTDetPhi_B_y;hAvgTroTDetPhi',type='TProfile',title='Avg. Trailing Edge on Track vs #phi (2D) for Xenon{0};#phi (deg);Trailing Edge (ns)'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=nPhiBins,xmin=0,xmax=360,duration='run') elif ibe == 1: shiftTrackGroup.defineHistogram('Pull_Biased_EndCap;hPull_Biased_EndCap',type='TH1F',title='Biased Track Pulls for EndCap Hits;Pulls;Entries',path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=200,xmin=-2.5,xmax=2.5,duration='run') for iside in range(2): regionTag = ' (' + beId[ibe] + sideId[iside] + ')' shiftTrackEndcapGroup = helper.addGroup(algTRTMonitoringRun3ESD,'ShiftTRTTrackHistograms{0}{1}'.format(ibe,iside)) shiftTrackEndcapGroup.defineHistogram('EvtPhaseDetPhi_E_x,EvtPhaseDetPhi_E_y;hEvtPhaseDetPhi_{0}'.format(sideId[iside]),type='TProfile',title='Event Phase vs #phi (2D){0};#phi (deg);Event Phase from Tracks per Event'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=nPhiBins,xmin=0,xmax=360,duration='run') shiftTrackEndcapGroup.defineHistogram('RtRelation_E_x,RtRelation_E_y;hrtRelation_{0}'.format(sideId[iside]),type='TH2F',title='R(t) Relation for Xenon Straws{0};Measured Leading Edge (ns);Track-to-Wire Distance (mm)'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=30,xmin=-12.5,xmax=81.25,ybins=50,ymin=0,ymax=2.5,duration='run') shiftTrackEndcapGroup.defineHistogram('NumHoTDetPhi_E_x,NumHoTDetPhi_E_y;hNumHoTDetPhi_{0}'.format(sideId[iside]),type='TProfile',title='Number of Hits per Track with {0} mm Cut vs #phi{1};#phi (deg);Hits per Track, TRT Hits> = {2}'.format(distance,regionTag,minTRTHits),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=nPhiBins,xmin=0,xmax=360,duration='run') shiftTrackEndcapGroup.defineHistogram('TronTDist_E;hTronTDist_{0}'.format(sideId[iside]),type='TH1F',title='Trailing Edge Distribution on Track for Xenon Straws{0};Trailing Edge (ns);Entries'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=26,xmin=-0.5,xmax=80.75,duration='run') shiftTrackEndcapGroup.defineHistogram('DriftTimeonTrkDist_E;hDriftTimeonTrkDist_{0}'.format(sideId[iside]),type='TH1F',title='Drift Time Distribution on Track for Xenon Straws{0};Drift Time (ns);Entries'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=32,xmin=0,xmax=100,duration='run') shiftTrackEndcapGroup.defineHistogram('NumTrksDetPhi_E;hNumTrksDetPhi_{0}'.format(sideId[iside]),type='TH1F',title='Number of Reconstructed Tracks vs #phi (2D){0};#phi (deg);Number of Tracks'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=60,xmin=0,xmax=360,duration='run') shiftTrackEndcapGroup.defineHistogram('Residual_E;hResidual_Xe_{0}'.format(sideId[iside]),type='TH1F',title='Residuals for Xenon Straws{0};Hit-to-Track Distance (mm);Entries'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=200,xmin=-2.5,xmax=2.5,duration='lowStat') shiftTrackEndcapGroup.defineHistogram('Residual_E;hResidual_Xe_{0}'.format(sideId[iside]),type='TH1F',title='Residuals for Xenon Straws{0};Hit-to-Track Distance (mm);Entries'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=200,xmin=-2.5,xmax=2.5,duration='run') shiftTrackEndcapGroup.defineHistogram('Residual_E_20GeV;hResidual_Xe_{0}_20GeV'.format(sideId[iside]),type='TH1F',title='Residuals for Xenon Straws{0} (After 20GeV pT cut);Hit-to-Track Distance (mm);Entries'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=200,xmin=-2.5,xmax=2.5,duration='run') shiftTrackEndcapGroup.defineHistogram('TimeResidual_E;hTimeResidual_{0}'.format(sideId[iside]),type='TH1F',title='Time Residuals for Xenon Straws{0};Time Residual (ns);Entries'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=200,xmin=-20,xmax=20,duration='run') shiftTrackEndcapGroup.defineHistogram('TronTDist_E_Ar;hTronTDist_Ar_{0}'.format(sideId[iside]),type='TH1F',title='Trailing Edge Distribution on Track for Argon Straws{0};Trailing Edge (ns);Entries'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=26,xmin=-0.5,xmax=80.75,duration='run') shiftTrackEndcapGroup.defineHistogram('AvgTroTDetPhi_E_Ar_x,AvgTroTDetPhi_E_Ar_y;hAvgTroTDetPhi_Ar_{0}'.format(sideId[iside]),type='TProfile',title='Avg. Trailing Edge on Track vs #phi (2D) for Argon{0};#phi (deg);Trailing Edge (ns)'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=nPhiBins,xmin=0,xmax=360,duration='run') shiftTrackEndcapGroup.defineHistogram('RtRelation_E_Ar_x,RtRelation_E_Ar_y;hrtRelation_Ar_{0}'.format(sideId[iside]),type='TH2F',title='R(t) Relation for Argon Straws{0};Measured Leading Edge (ns);Track-to-Wire Distance (mm)'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=30,xmin=-12.5,xmax=81.25,ybins=50,ymin=0,ymax=2.5,duration='run') shiftTrackEndcapGroup.defineHistogram('DriftTimeonTrkDist_E_Ar;hDriftTimeonTrkDist_Ar_{0}'.format(sideId[iside]),type='TH1F',title='Drift Time Distribution on Track for Argon Straws{0};Drift Time (ns);Entries'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=32,xmin=0,xmax=100,duration='run') shiftTrackEndcapGroup.defineHistogram('Residual_E_Ar;hResidual_Ar_{0}'.format(sideId[iside]),type='TH1F',title='Residuals for Argon Straws{0};Hit-to-Track Distance (mm);Entries'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=200,xmin=-2.5,xmax=2.5,duration='lowStat') shiftTrackEndcapGroup.defineHistogram('Residual_E_Ar;hResidual_Ar_{0}'.format(sideId[iside]),type='TH1F',title='Residuals for Argon Straws{0};Hit-to-Track Distance (mm);Entries'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=200,xmin=-2.5,xmax=2.5,duration='run') shiftTrackEndcapGroup.defineHistogram('Residual_E_Ar_20GeV;hResidual_Ar_{0}_20GeV'.format(sideId[iside]),type='TH1F',title='Residuals for Argon Straws{0} (After 20GeV pT cut);Hit-to-Track Distance (mm);Entries'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=200,xmin=-2.5,xmax=2.5,duration='run') shiftTrackEndcapGroup.defineHistogram('TimeResidual_E_Ar;hTimeResidual_Ar_{0}'.format(sideId[iside]),type='TH1F',title='Time Residuals for Argon Straws{0};Time Residual (ns);Entries'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=200,xmin=-20,xmax=20,duration='run') shiftTrackEndcapGroup.defineHistogram('WireToTrkPosition_E_Ar;hWireToTrkPosition_Ar_{0}'.format(sideId[iside]),type='TH1F',title='Track-to-Wire Distance for Argon{0};Track-to-Wire Distance (mm);Entries'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=100,xmin=-5,xmax=5,duration='run') shiftTrackEndcapGroup.defineHistogram('WireToTrkPosition_E;hWireToTrkPosition_{0}'.format(sideId[iside]),type='TH1F',title='Track-to-Wire Distance for Xenon{0};Track-to-Wire Distance (mm);Norm. Entries'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=100,xmin=-5,xmax=5,duration='run') shiftTrackEndcapGroup.defineHistogram('AvgTroTDetPhi_E_x,AvgTroTDetPhi_E_y;hAvgTroTDetPhi_{0}'.format(sideId[iside]),type='TProfile',title='Avg. Trailing Edge on Track vs #phi (2D) for Xenon{0};#phi (deg);Trailing Edge (ns)'.format(regionTag),path='TRT/Shift/{0}'.format(barrelOrEndcap[ibe]),xbins=nPhiBins,xmin=0,xmax=360,duration='run') #Initialize Aging plots for iL in range(5): for iSide in range(2): if ibe == 0: if iL < 3: agingGroup = helper.addGroup(algTRTMonitoringRun3ESD,'TRTAgingHistograms0{0}{1}'.format(iL,iSide)) agingGroup.defineHistogram('Trackz_All;trackz_m{0}_{1}_All'.format(Mod[iL],sideId[iSide]),type='TH1F',title='Number All Hits side {0} Layer {1};z [mm];Number of Hits'.format(sideId[iSide],Mod[iL]),path='TRT/Aging/{0}'.format(barrelOrEndcap[ibe]),xbins=30,xmin=-750.,xmax=750.,duration='run') agingGroup.defineHistogram('Trackz_All;trackz_m{0}_{1}_All'.format(Mod[iL],sideId[iSide]),type='TH1F',title='Number All Hits side {0} Layer {1};z [mm];Number of Hits'.format(sideId[iSide],Mod[iL]),path='TRT/Aging/{0}'.format(barrelOrEndcap[ibe]),xbins=30,xmin=-750.,xmax=750.,duration='lowStat') agingGroup.defineHistogram('Trackz_HT;trackz_m{0}_{1}_HT'.format(Mod[iL],sideId[iSide]),type='TH1F',title='Number HT Hits side {0} Layer {1};z [mm];Number of HT Hits'.format(sideId[iSide],Mod[iL]),path='TRT/Aging/{0}'.format(barrelOrEndcap[ibe]),xbins=30,xmin=-750.,xmax=750.,duration='run') agingGroup.defineHistogram('Trackz_HT;trackz_m{0}_{1}_HT'.format(Mod[iL],sideId[iSide]),type='TH1F',title='Number HT Hits side {0} Layer {1};z [mm];Number of HT Hits'.format(sideId[iSide],Mod[iL]),path='TRT/Aging/{0}'.format(barrelOrEndcap[ibe]),xbins=30,xmin=-750.,xmax=750.,duration='lowStat') if iL == 3: agingGroup = helper.addGroup(algTRTMonitoringRun3ESD,'TRTAgingHistograms03{0}'.format(iSide)) agingGroup.defineHistogram('Trackz_All;trackz_m1_{0}_All_{1}'.format(sideId[iSide],Mod[iL]),type='TH1F',title='Number All Hits side {0} Layer 1 {1};z [mm];Number of Hits'.format(sideId[iSide],Mod[iL]),path='TRT/Aging/{0}'.format(barrelOrEndcap[ibe]),xbins=30,xmin=0.,xmax=725.,duration='run') agingGroup.defineHistogram('Trackz_All;trackz_m1_{0}_All_{1}'.format(sideId[iSide],Mod[iL]),type='TH1F',title='Number All Hits side {0} Layer 1 {1};z [mm];Number of Hits'.format(sideId[iSide],Mod[iL]),path='TRT/Aging/{0}'.format(barrelOrEndcap[ibe]),xbins=30,xmin=0.,xmax=725.,duration='lowStat') agingGroup.defineHistogram('Trackz_HT;trackz_m1_{0}_HT_{1}'.format(sideId[iSide],Mod[iL]),type='TH1F',title='Number HT Hits side {0} Layer 1 {1};z [mm];Number of HT Hits'.format(sideId[iSide],Mod[iL]),path='TRT/Aging/{0}'.format(barrelOrEndcap[ibe]),xbins=30,xmin=0.,xmax=725.,duration='run') agingGroup.defineHistogram('Trackz_HT;trackz_m1_{0}_HT_{1}'.format(sideId[iSide],Mod[iL]),type='TH1F',title='Number HT Hits side {0} Layer 1 {1};z [mm];Number of HT Hits'.format(sideId[iSide],Mod[iL]),path='TRT/Aging/{0}'.format(barrelOrEndcap[ibe]),xbins=30,xmin=0.,xmax=725.,duration='lowStat') if iL == 4: agingGroup = helper.addGroup(algTRTMonitoringRun3ESD,'TRTAgingHistograms04{0}'.format(iSide)) agingGroup.defineHistogram('Trackz_All;trackz_m1_{0}_All_{1}'.format(sideId[iSide],Mod[iL]),type='TH1F',title='Number All Hits side {0} Layer 1 {1};z [mm];Number of Hits'.format(sideId[iSide],Mod[iL]),path='TRT/Aging/{0}'.format(barrelOrEndcap[ibe]),xbins=30,xmin=-725.,xmax=0.,duration='run') agingGroup.defineHistogram('Trackz_All;trackz_m1_{0}_All_{1}'.format(sideId[iSide],Mod[iL]),type='TH1F',title='Number All Hits side {0} Layer 1 {1};z [mm];Number of Hits'.format(sideId[iSide],Mod[iL]),path='TRT/Aging/{0}'.format(barrelOrEndcap[ibe]),xbins=30,xmin=-725.,xmax=0.,duration='lowStat') agingGroup.defineHistogram('Trackz_HT;trackz_m1_{0}_HT_{1}'.format(sideId[iSide],Mod[iL]),type='TH1F',title='Number HT Hits side {0} Layer 1 {1};z [mm];Number of HT Hits'.format(sideId[iSide],Mod[iL]),path='TRT/Aging/{0}'.format(barrelOrEndcap[ibe]),xbins=30,xmin=-725.,xmax=0.,duration='run') agingGroup.defineHistogram('Trackz_HT;trackz_m1_{0}_HT_{1}'.format(sideId[iSide],Mod[iL]),type='TH1F',title='Number HT Hits side {0} Layer 1 {1};z [mm];Number of HT Hits'.format(sideId[iSide],Mod[iL]),path='TRT/Aging/{0}'.format(barrelOrEndcap[ibe]),xbins=30,xmin=-725.,xmax=0.,duration='lowStat') elif ibe == 1: # prevent double booking of histograms here if iL < 4: agingGroup = helper.addGroup(algTRTMonitoringRun3ESD,'TRTAgingHistograms1{0}{1}'.format(iL,iSide)) agingGroup.defineHistogram('Trackr_All;trackr_E{0}_{1}_All'.format(sideId[iSide],gas[iL]),type='TH1F',title='Number All Hits E{0} {1};r [mm];Number of Hits'.format(sideId[iSide],gas[iL]),path='TRT/Aging/{0}'.format(barrelOrEndcap[ibe]),xbins=30,xmin=644.,xmax=1004.,duration='run') agingGroup.defineHistogram('Trackr_All;trackr_E{0}_{1}_All'.format(sideId[iSide],gas[iL]),type='TH1F',title='Number All Hits E{0} {1};r [mm];Number of Hits'.format(sideId[iSide],gas[iL]),path='TRT/Aging/{0}'.format(barrelOrEndcap[ibe]),xbins=30,xmin=644.,xmax=1004.,duration='lowStat') agingGroup.defineHistogram('Trackr_HT;trackr_E{0}_{1}_HT'.format(sideId[iSide],gas[iL]),type='TH1F',title='Number HT Hits E{0} {1};r [mm];Number of HT Hits'.format(sideId[iSide],gas[iL]),path='TRT/Aging/{0}'.format(barrelOrEndcap[ibe]),xbins=30,xmin=644.,xmax=1004.,duration='run') agingGroup.defineHistogram('Trackr_HT;trackr_E{0}_{1}_HT'.format(sideId[iSide],gas[iL]),type='TH1F',title='Number HT Hits E{0} {1};r [mm];Number of HT Hits'.format(sideId[iSide],gas[iL]),path='TRT/Aging/{0}'.format(barrelOrEndcap[ibe]),xbins=30,xmin=644.,xmax=1004.,duration='lowStat') acc = helper.result() result.merge(acc) return result
def Run3AFPExampleMonitoringConfig(inputFlags): '''Function to configures some algorithms in the monitoring system.''' from AthenaMonitoring import AthMonitorCfgHelper helper = AthMonitorCfgHelper(inputFlags, 'Run3AFPMonitorCfg') from AthenaConfiguration.ComponentFactory import CompFactory #from Run3AFPMonitoring.Run3AFPMonitoringConf import AFPSiLayerAlgorithm afpSiLayerAlgorithmFac = CompFactory.AFPSiLayerAlgorithm afpSiLayerAlgorithm = helper.addAlgorithm(afpSiLayerAlgorithmFac, 'AFPSiLayerAlg') #from Run3AFPMonitoring.Run3AFPMonitoringConf import AFPToFAlgorithm afpToFAlgorithmFac = CompFactory.AFPToFAlgorithm afpToFAlgorithm = helper.addAlgorithm(afpToFAlgorithmFac, 'AFPToFAlg') # Add a generic monitoring tool (a "group" in old language). The returned # object here is the standard GenericMonitoringTool. AFPSiGroup = helper.addGroup(afpSiLayerAlgorithm, 'AFPSiLayerTool', 'AFP/') AFPToFGroup = helper.addGroup(afpToFAlgorithm, 'AFPToFTool', 'AFP/') AFPSiGroup.defineHistogram( 'lb,nSiHits', title='Luminosity Block;lb;total number of Hits', type='TProfile', path='SiT/', xbins=1000, xmin=-0.5, xmax=999.5) AFPToFGroup.defineHistogram( 'lb,nTofHits', title='Luminosity Block;lb;total number of Hits', type='TProfile', path='ToF/', xbins=1000, xmin=-0.5, xmax=999.5) AFPToFGroup.defineHistogram( 'numberOfHit_S0', title='Number of hit per bar station 0;total number of Hits', path='ToF/', xbins=4, xmin=-0.5, xmax=3.5) AFPToFGroup.defineHistogram( 'numberOfHit_S3', title='Number of hit per bar station 3;total number of Hits', path='ToF/', xbins=4, xmin=-0.5, xmax=3.5) # Using a map of groups layerList = ['P0', 'P1', 'P2', 'P3'] ## TODO XXX adapt to the enum/xAOD namespace names combinedList = ['farAside', 'nearAside', 'nearCside', 'farCside'] array = helper.addArray([combinedList, layerList], afpSiLayerAlgorithm, 'AFPSiLayerTool', topPath='AFP/SiT/') array.defineHistogram('pixelColIDChip', title='1D hitmap for {0} Layer {1};pixelColIDChip', path='PixelColIDChip', xbins=80, xmin=0.5, xmax=80.5) array.defineHistogram('pixelRowIDChip', title='1D hitmap for {0} Layer {1};pixelRowIDChip', path='PixelRowIDChip', xbins=336, xmin=0.5, xmax=336.5) array.defineHistogram( 'pixelColIDChip,pixelRowIDChip', title='hitmap for {0} Layer {1};pixelColIDChip;pixelRowIDChip', type='TH2F', path='pixelColRow2D', xbins=80, xmin=0.5, xmax=80.5, ybins=336, ymin=0.5, ymax=336.5) array.defineHistogram( 'timeOverThreshold', type='TH1F', title='1D Time over threshold for {0} Layer {1};timeOverThreshold', path='SiTimeOverThreshold', xbins=60, xmin=0, xmax=20) array.defineHistogram( 'clusterX,clusterY', title='Cluster position in station {0} Layer {1};clusterX;clusterY', type='TH2F', path='Cluster', xbins=80, xmin=0.5, xmax=80.5, ybins=336, ymin=0.5, ymax=336.5) array = helper.addArray([combinedList], afpSiLayerAlgorithm, 'AFPSiLayerTool', topPath='AFP/Track/') array.defineHistogram( 'trackX,trackY', title='Track posistion position in station {0};trackX;trackY', type='TH2F', path='Track', xbins=80, xmin=0.5, xmax=80.5, ybins=336, ymin=0.5, ymax=336.5) arrayOneList = helper.addArray([combinedList], afpToFAlgorithm, 'AFPToFTool', topPath='AFP/ToF/') arrayOneList.defineHistogram( 'trainID,barInTrainID', title='ToF hit bar vs train {0};trainID;barInTrainID', type='TH2F', path='HitBarvsTrain/', xbins=4, xmin=-0.5, xmax=3.5, ybins=4, ymin=-0.5, ymax=3.5) # Finalize. The return value should be a tuple of the ComponentAccumulator return helper.result()
def tauMonitoringConfig(inputFlags): '''Function to configures some algorithms in the monitoring system.''' ### STEP 1 ### # The following class will make a sequence, configure algorithms, and link # them to GenericMonitoringTools from AthenaMonitoring import AthMonitorCfgHelper cfgHelper = AthMonitorCfgHelper(inputFlags, monName='tauMonitorAlgFamily') ### STEP 2 ### # Adding an algorithm to the helper. Here, we will use the example # algorithm in the AthenaMonitoring package. Just pass the type to the # helper. Then, the helper will instantiate an instance and set up the # base class configuration following the inputFlags. The returned object # is the algorithm. from AthenaConfiguration.ComponentFactory import CompFactory tauMonitorAlgorithm = CompFactory.tauMonitorAlgorithm tauMonAlgBA = cfgHelper.addAlgorithm(tauMonitorAlgorithm, name='tauMonAlgBA') tauMonAlgCR = cfgHelper.addAlgorithm(tauMonitorAlgorithm, name='tauMonAlgCR') tauMonAlgEC = cfgHelper.addAlgorithm(tauMonitorAlgorithm, name='tauMonAlgEC') tauMonAlgGlobal = cfgHelper.addAlgorithm(tauMonitorAlgorithm, name='tauMonAlgGlobal') tauMonAlgTauTrig = cfgHelper.addAlgorithm(tauMonitorAlgorithm, name='tauMonAlgTauTrig') tauMonAlgEleTrig = cfgHelper.addAlgorithm(tauMonitorAlgorithm, name='tauMonAlgEleTrig') tauMonAlgJetTrig = cfgHelper.addAlgorithm(tauMonitorAlgorithm, name='tauMonAlgJetTrig') tauMonAlgHighPt = cfgHelper.addAlgorithm(tauMonitorAlgorithm, name='tauMonAlgHighPt') tauMonAlgHighPtBDTLoose = cfgHelper.addAlgorithm( tauMonitorAlgorithm, name='tauMonAlgHighPtBDTLoose') ### STEP 3 ### # Edit properties of a algorithm # some generic property # exampleMonAlg.RandomHist = True # to enable a trigger filter, for example: #exampleMonAlg.TriggerChain = 'HLT_mu26_ivarmedium' tauMonAlgBA.etaMin = -1. tauMonAlgBA.etaMax = 1.3 tauMonAlgCR.etaMin = 1.3 tauMonAlgCR.etaMax = 1.7 tauMonAlgEC.etaMin = 1.7 tauMonAlgEC.etaMax = 3.5 tauMonAlgGlobal.etaMin = -100 tauMonAlgGlobal.etaMax = 100 tauMonAlgTauTrig.etaMin = -100 tauMonAlgTauTrig.etaMax = 100 tauMonAlgEleTrig.etaMin = -100 tauMonAlgEleTrig.etaMax = 100 tauMonAlgJetTrig.etaMin = -100 tauMonAlgJetTrig.etaMax = 100 tauMonAlgHighPt.etaMin = -100 tauMonAlgHighPt.etaMax = 100 tauMonAlgHighPtBDTLoose.etaMin = -100 tauMonAlgHighPtBDTLoose.etaMax = 100 tauMonAlgBA.kinGroupName = 'tauMonKinGroupBA' tauMonAlgCR.kinGroupName = 'tauMonKinGroupCR' tauMonAlgEC.kinGroupName = 'tauMonKinGroupEC' tauMonAlgGlobal.kinGroupName = 'tauMonKinGroupGlobal' tauMonAlgTauTrig.kinGroupName = 'tauMonKinGroupTauTrig' tauMonAlgEleTrig.kinGroupName = 'tauMonKinGroupEleTrig' tauMonAlgJetTrig.kinGroupName = 'tauMonKinGroupJetTrig' tauMonAlgHighPt.kinGroupName = 'tauMonKinGroupHighPt' tauMonAlgHighPtBDTLoose.kinGroupName = 'tauMonKinGroupHighPtBDTLoose' ### STEP 4 ### # Add some tools. N.B. Do not use your own trigger decion tool. Use the # standard one that is included with AthMonitorAlgorithm. # Add a generic monitoring tool (a "group" in old language). The returned # object here is the standard GenericMonitoringTool. myKinGroupBA = cfgHelper.addGroup(alg=tauMonAlgBA, name='tauMonKinGroupBA', topPath='Tau/TauB/') myKinGroupCR = cfgHelper.addGroup(alg=tauMonAlgCR, name='tauMonKinGroupCR', topPath='Tau/TauCR/') myKinGroupEC = cfgHelper.addGroup(alg=tauMonAlgEC, name='tauMonKinGroupEC', topPath='Tau/TauE/') myKinGroupGlobal = cfgHelper.addGroup(alg=tauMonAlgGlobal, name='tauMonKinGroupGlobal', topPath='Tau/') myKinGroupTauTrig = cfgHelper.addGroup(alg=tauMonAlgTauTrig, name='tauMonKinGroupTauTrig', topPath='Tau/Trigger/TauTrig') myKinGroupEleTrig = cfgHelper.addGroup(alg=tauMonAlgEleTrig, name='tauMonKinGroupEleTrig', topPath='Tau/Trigger/EleTrig') myKinGroupJetTrig = cfgHelper.addGroup(alg=tauMonAlgJetTrig, name='tauMonKinGroupJetTrig', topPath='Tau/Trigger/JetTrig') myKinGroupHighPt = cfgHelper.addGroup(alg=tauMonAlgHighPt, name='tauMonKinGroupHighPt', topPath='Tau/') myKinGroupHighPtBDTLoose = cfgHelper.addGroup( alg=tauMonAlgHighPtBDTLoose, name='tauMonKinGroupHighPtBDTLoose', topPath='Tau/') naming = { 'BA': "Tau_TauB_", 'CR': "Tau_TauCR_", 'EC': "Tau_TauE_", 'Global': "", 'HighPt': "", 'HighPtBDTLoose': "", 'EleTrig': "emTriggered_", 'JetTrig': "jetTriggered_", 'TauTrig': "tauTriggered_", } def namer(variables, histogramName, folder, algorithm): if folder != "": #This wouldn't have been necessary except the calo folder in the naming convention: #This adds the Tau prefix to the histograms in the calo folder if postfix == "Global" and (folder == "Calo" or folder == "Track"): return variables + ";" + "Tau_" + naming[ algorithm] + folder + "_" + histogramName else: return variables + ";" + naming[ algorithm] + folder + "_" + histogramName else: return variables + ";" + naming[algorithm] + folder + histogramName # Add a GMT for the other example monitor algorithm # anotherGroup = cfgHelper.addGroup(anotherTauMonAlg,'tauMonitor') ### STEP 5 ### # Configure histograms for itup in [(myKinGroupBA, 'BA'), (myKinGroupCR, 'CR'), (myKinGroupEC, 'EC'), (myKinGroupGlobal, 'Global'), (myKinGroupHighPt, 'HighPt'), (myKinGroupHighPtBDTLoose, 'HighPtBDTLoose'), (myKinGroupEleTrig, 'EleTrig'), (myKinGroupJetTrig, 'JetTrig'), (myKinGroupTauTrig, 'TauTrig')]: (igroup, postfix) = itup PHIMIN = -pi PHIMAX = pi folder = "" if (postfix == "BA" or postfix == "CR" or postfix == "EC" or postfix == "Global" or postfix == "TauTrig" or postfix == "EleTrig" or postfix == "JetTrig"): igroup.defineHistogram( namer('nTauCandidates', 'nTauCandidates', "", postfix), title='Number of tau candidates;Number of Taus per Event', xbins=30, xmin=-0.5, xmax=30.5, path=folder) igroup.defineHistogram( namer('tauCharge', 'tauCharge', '', postfix), title='Charge of tau candidates;Charge;Number of Candidates', xbins=11, xmin=-5.5, xmax=5.5, path=folder) igroup.defineHistogram( namer('tauEt', 'tauEt', '', postfix), title= 'Et of tau candidates;Transverse Energy (GeV);Number of Candidates', xbins=60, xmin=0., xmax=300., path=folder) igroup.defineHistogram( namer('tauEta', 'tauEta', '', postfix), title='Eta of tau candidates;Eta;Number of Candidates', xbins=51, xmin=-2.55, xmax=2.55, path=folder) igroup.defineHistogram(namer('LB,tauEta', 'tauEtaVsLB', '', postfix), type='TH2F', title='Tau Eta Vs Lumiblock;Lumiblock;eta', xbins=1200, xmin=0, xmax=1200, ybins=51, ymin=-2.55, ymax=2.55, path=folder) igroup.defineHistogram( namer('tauPhi', 'tauPhi', '', postfix), title='Phi of tau candidates;Phi;Number of Candidates', xbins=65, xmin=PHIMIN - 0.098174 / 2., xmax=PHIMAX + 0.098174 / 2., path=folder) igroup.defineHistogram(namer('tauEta,tauPhi', 'tauPhiVsEta', '', postfix), type='TH2F', title='PhiVsEtaTitle;Eta;Phi', xbins=30, xmin=-2.55, xmax=2.55, ybins=32, ymin=PHIMIN, ymax=PHIMAX, path=folder) igroup.defineHistogram(namer('LB,tauPhi', 'tauPhiVsLB', '', postfix), type='TH2F', title='Tau Phi vs Lumiblock;Lumiblock;Phi', xbins=1200, xmin=0, xmax=1200, ybins=80, ymin=PHIMIN, ymax=PHIMAX, path=folder) if (postfix == "BA" or postfix == "CR" or postfix == "EC" or postfix == "TauTrig"): igroup.defineHistogram( namer('tauPhiBDTLoose', 'phi', 'Identification_BDTLoose', postfix), title= 'Phi of tau candidates ( BDTLoose) ;Phi;Number of Candidates', xbins=65, xmin=PHIMIN - 0.098174 / 2., xmax=PHIMAX + 0.098174 / 2., path=folder + "Identification/BDTLoose") igroup.defineHistogram( namer('tauEtaBDTLoose', 'eta', 'Identification_BDTLoose', postfix), title= 'Eta of tau candidates ( BDTLoose) ;Eta;Number of Candidates', xbins=51, xmin=-2.55, xmax=2.55, path=folder + "Identification/BDTLoose") igroup.defineHistogram( namer('tauEtBDTLoose', 'et', 'Identification_BDTLoose', postfix), title= 'Et of tau candidates;Transverse Energy (GeV);Number of Candidates', xbins=60, xmin=0., xmax=300., path=folder + "Identification/BDTLoose") igroup.defineHistogram( namer('NumTracksBDTLoose', 'NumTracks', 'Identification_BDTLoose', postfix), title= 'Number Of Tracks for Tau Candidates (BDTLoose);Number Of Tracks;Number Of Candidates', xbins=21, xmin=-0.5, xmax=20.5, path=folder + "Identification/BDTLoose") igroup.defineHistogram( namer('tauPhiBDTMedium', 'phi', 'Identification_BDTMedium', postfix), title= 'Phi of tau candidates ( BDTMedium) ;Phi;Number of Candidates', xbins=65, xmin=PHIMIN - 0.098174 / 2., xmax=PHIMAX + 0.098174 / 2., path=folder + "Identification/BDTMedium") igroup.defineHistogram( namer('tauEtaBDTMedium', 'eta', 'Identification_BDTMedium', postfix), title= 'Eta of tau candidates ( BDTMedium) ;Eta;Number of Candidates', xbins=51, xmin=-2.55, xmax=2.55, path=folder + "Identification/BDTMedium") igroup.defineHistogram( namer('tauEtBDTMedium', 'et', 'Identification_BDTMedium', postfix), title= 'Et of tau candidates;Transverse Energy (GeV);Number of Candidates', xbins=60, xmin=0., xmax=300., path=folder + "Identification/BDTMedium") igroup.defineHistogram( namer('NumTracksBDTMedium', 'NumTracks', 'Identification_BDTMedium', postfix), title= 'Number Of Tracks for Tau Candidates (BDTMedium);Number Of Tracks;Number Of Candidates', xbins=21, xmin=-0.5, xmax=20.5, path=folder + "Identification/BDTMedium") igroup.defineHistogram( namer('tauPhiEt15BDTLoose', 'phi', 'Identification_BDTLoose15GeV', postfix), title= 'Phi of tau candidates (Et>15, BDTLoose) ;Phi;Number of Candidates', xbins=65, xmin=PHIMIN - 0.098174 / 2., xmax=PHIMAX + 0.098174 / 2., path=folder + "Identification/BDTLoose15GeV") igroup.defineHistogram( namer('tauEtaEt15BDTLoose', 'eta', 'Identification_BDTLoose15GeV', postfix), title= 'Eta of tau candidates (Et>15, BDTLoose) ;Eta;Number of Candidates', xbins=51, xmin=-2.55, xmax=2.55, path=folder + "Identification/BDTLoose15GeV") igroup.defineHistogram( namer('nClustersEt15BDTLoose', 'nCluster', 'Identification_BDTLoose15GeV', postfix), title= 'Number Of CaloTopoClusters (Et>15,BDTLoose);Number Of Clusters;Number Of Candidates', xbins=40, xmin=0., xmax=40., path=folder + "Identification/BDTLoose15GeV") igroup.defineHistogram( namer('NumTracksEt15BDTLoose', 'NumTracks', 'Identification_BDTLoose15GeV', postfix), title= 'Number Of Tracks for Tau Candidates (Et>15,BDTLoose);Number Of Tracks;Number Of Candidates', xbins=21, xmin=-0.5, xmax=20.5, path=folder + "Identification/BDTLoose15GeV") igroup.defineHistogram( namer('tauEtEt15BDTLoose', 'et', 'Identification_BDTLoose15GeV', postfix), title= 'Et of tau candidates;Transverse Energy (GeV);Number of Candidates', xbins=60, xmin=0., xmax=300., path=folder + "Identification/BDTLoose15GeV") igroup.defineHistogram( namer('panModeEt15BDTLoose', 'panMode', 'Identification_BDTLoose15GeV', postfix), title='tau decay mode from panTau upon JetBDTSigMedium;mode', xbins=5, xmin=0., xmax=5., path=folder + "Identification/BDTLoose15GeV", xlabels=["1p0n", "1p1n", "1pXn", "3p0n", "3pXn"]) igroup.defineHistogram( namer('jetSeedEta', 'jetSeedEta', 'Calo', postfix), title= 'Calorimeter eta of tau candidates;Eta;Numbers of Candidates', path=folder + "Calo", xbins=50, xmin=-2.5, xmax=2.5) igroup.defineHistogram( namer('jetSeedPhi', 'jetSeedPhi', 'Calo', postfix), title= 'Calorimeter phi of tau candidates;Phi;Numbers of Candidates', path=folder + "Calo", xbins=64, xmin=PHIMIN, xmax=PHIMAX) igroup.defineHistogram( namer('jetSeedPt', 'jetSeedPt', 'Calo', postfix), title= 'Calorimeter pt of tau candidates;Et;Numbers of Candidates', path=folder + "Calo", xbins=100, xmin=0., xmax=300) igroup.defineHistogram( namer('EMRadius', 'EMRadius', 'Calo', postfix), title='Uncalibrated EM Radius;EM Radius;Number Of Candidates', path=folder + "Calo", xbins=50, xmin=0., xmax=1.2) igroup.defineHistogram( namer('hadRadius', 'hadRadius', 'Calo', postfix), title= 'Hadronic Radius of tau candidates;Hadronic Radius; Number Of Candidates', path=folder + "Calo", xbins=50, xmin=0., xmax=1.) igroup.defineHistogram( namer('stripWidth2', 'stripWidth2', 'Calo', postfix), title= 'Strip Width of tau candidates;Strip Width;Number of Candidates', path=folder + "Calo", xbins=50, xmin=-0.1, xmax=0.12) igroup.defineHistogram( namer('isolFrac', 'isolFrac', 'Calo', postfix), title= 'Isolation Fraction;Et Isolation Fraction;Number of Candidates', path=folder + "Calo", xbins=51, xmin=0.0, xmax=1.02) igroup.defineHistogram( namer('nStrip', 'nStrip', 'Calo', postfix), title= 'Number of strip cells of tau candidates;Number of Strip Cells;Number of Candidates', path=folder + "Calo", xbins=56, xmin=-0.5, xmax=55.5) igroup.defineHistogram( namer('etEMAtEMScale', 'etEMAtEMScale', 'Calo', postfix), title= 'EM energy at the EM scale;EM Et (GeV) );Number of Candidates', path=folder + "Calo", xbins=50, xmin=0., xmax=200.) igroup.defineHistogram( namer('etHadAtEMScale', 'etHadAtEMScale', 'Calo', postfix), title= 'Hadronic Energy at the EM Scale;Had Et (GeV) );Number of Candidates', path=folder + "Calo", xbins=50, xmin=0., xmax=200.) igroup.defineHistogram( namer('centFrac,LB', 'CentFracVsLB', 'Calo', postfix), type='TH2F', title= 'Centrality Fraction vs Lumiblock;Centrality Fraction;Lumiblock', path=folder + "Calo", xbins=51, xmin=0, xmax=1.02, ybins=1200, ymin=0., ymax=1200.) igroup.defineHistogram( 'centFrac,LB', type='TH2F', title= 'Centrality Fraction vs Lumiblock;Centrality Fraction;Lumiblock', path=folder + "Calo", xbins=51, xmin=0, xmax=1.02, ybins=1200, ymin=0., ymax=1200.) igroup.defineHistogram( 'isolFrac,LB', type='TH2F', title= 'Isolation Fraction vs Lumiblock;Isolation Fraction;Lumiblock', path=folder + "Calo", xbins=51, xmin=0, xmax=1.02, ybins=1200, ymin=0., ymax=1200.) igroup.defineHistogram( namer('BDTJetScore', 'BDTJetScore', 'Identification', postfix), title='BDT Score for Jet Rejection;Boosted Decision Tree Score', path=folder + "Identification", xbins=48, xmin=-1.1, xmax=1.1) igroup.defineHistogram(namer('JetBDTBkgMedium', 'JetBDTBkgMedium', 'Identification', postfix), title='Loose EleBDT', path=folder + "Identification", xbins=2, xmin=-0.5, xmax=1.5, xlabels=["False", "True"]) igroup.defineHistogram( namer('BDTEleScoreSigTrans', 'BDTEleScoreSigTrans', 'Identification', postfix), title= ' Flattened Signal Transformed BDT for Ele Rejection;Boosted Decision Tree Score', path=folder + "Identification", xbins=24, xmin=-0.1, xmax=1.1) igroup.defineHistogram( namer('BDTJetScoreSigTrans', 'BDTJetScoreSigTrans', 'Identification', postfix), title= 'Flattened signal Transformed BDT Score for Jet Rejection;Boosted Decision Tree Score', path=folder + "Identification", xbins=48, xmin=0, xmax=1.1) igroup.defineHistogram(namer('eleBDTMedium', 'eleBDTMedium', 'Identification', postfix), title='Medium EleBDT', path=folder + "Identification", xbins=2, xmin=-0.5, xmax=1.5, xlabels=["False", "True"]) igroup.defineHistogram(namer('eleBDTTight', 'eleBDTTight', 'Identification', postfix), title='Tight EleBDT', path=folder + "Identification", xbins=2, xmin=-0.5, xmax=1.5, xlabels=["False", "True"]) igroup.defineHistogram(namer('muonVeto', 'muonVeto', 'Identification', postfix), title='Muon Veto', path=folder + "Identification", xbins=2, xmin=-0.5, xmax=1.5, xlabels=["False", "True"]) igroup.defineHistogram(namer('tauBDTLoose', 'tauBDTLoose', 'Identification', postfix), title='Identification Flag: tauBDTLoose', path=folder + "Identification", xbins=2, xmin=-0.5, xmax=1.5, xlabels=["False", "True"]) igroup.defineHistogram(namer('tauBDTMedium', 'tauBDTMedium', 'Identification', postfix), title='Identification Flag: tauBDTMedium', path=folder + "Identification", xbins=2, xmin=-0.5, xmax=1.5, xlabels=["False", "True"]) igroup.defineHistogram(namer('tauBDTTight', 'tauBDTTight', 'Identification', postfix), title='Identification Flag: tauBDTTight', path=folder + "Identification", xbins=2, xmin=-0.5, xmax=1.5, xlabels=["False", "True"]) #Substructure Histograms igroup.defineHistogram( namer('panModeSubstructure', 'panMode', 'SubStructure', postfix), title='tau decay mode from PanTau upon JetBDTSigMedium;mode', xbins=8, xmin=0., xmax=8., path=folder + "SubStructure") igroup.defineHistogram( namer('BDTScoreAsP0', 'BDTScoreAsP0', 'SubStructure', postfix), title='BDT score indentifying pion zero ; BDT score', path=folder + "SubStructure", xbins=15, xmin=-0, xmax=1.2) igroup.defineHistogram( namer('EMFracTrk', 'EMFracTrk', 'SubStructure', postfix), title= 'Ratio of pt to shot electromagnetic energy for associated tracks; track pt ratio in EM', path=folder + "SubStructure", xbins=15, xmin=0, xmax=1.5) igroup.defineHistogram( namer('EfracL2EffCluster', 'EfracL2EffCluster', 'SubStructure', postfix), title= 'Energy fraction of leading two effective clusters in shot; energy fraction', path=folder + "SubStructure", xbins=15, xmin=0, xmax=1.5) igroup.defineHistogram( namer('EisoEffCluster', 'EisoEffCluster', 'SubStructure', postfix), title= 'Isolation Energy after correction in effective clusters ; isolation energy (GeV)', path=folder + "SubStructure", xbins=10, xmin=0, xmax=50.) igroup.defineHistogram( namer('InvMassEffClusters', 'InvMassEffClusters', 'SubStructure', postfix), title= 'Invariant mass of effective clusters in shot; invariant mass (GeV)', path=folder + "SubStructure", xbins=40, xmin=0, xmax=8.) igroup.defineHistogram( namer('nNeutPFO', 'nNeutPFO', 'SubStructure', postfix), title= '_NumNeutPFO;Number of neutral ParticleFlow objects ; PFO number', path=folder + "SubStructure", xbins=20, xmin=0, xmax=20.) igroup.defineHistogram(namer('nShot', 'nShot', 'SubStructure', postfix), title='number of shots ; shot number ', path=folder + "SubStructure", xbins=20, xmin=0, xmax=20.) igroup.defineHistogram( namer('panEta', 'panEta', 'SubStructure', postfix), title='tau Eta from PanTau ; substructure Eta', path=folder + "SubStructure", xbins=16, xmin=-3.2, xmax=3.2) igroup.defineHistogram( namer('panPhi', 'panPhi', 'SubStructure', postfix), title='tau Phi from PanTau ; substructure Phi', path=folder + "SubStructure", xbins=16, xmin=PHIMIN, xmax=PHIMAX) igroup.defineHistogram( namer('panPt', 'panPt', 'SubStructure', postfix), title='tau Pt from PanTau ; substructure pt (GeV)', path=folder + "SubStructure", xbins=20, xmin=0, xmax=200) igroup.defineHistogram( namer('pt3', 'shots_pt3', 'SubStructure', postfix), title='weighted cell pt in 3x3 window in shots; pt3 (GeV) ', path=folder + "SubStructure", xbins=24, xmin=0, xmax=12) igroup.defineHistogram( namer('PSSFrac', 'PSSFracEffCluster', 'SubStructure', postfix), title= 'Energy fraction for PreSampling and sampling layers in effective clusters in shot;Sampling Energy Fraction', path=folder + "SubStructure", xbins=10, xmin=0, xmax=1.) igroup.defineHistogram( namer('ptRatioEflowApprox', 'ptRatioApprox', 'SubStructure', postfix), title= 'Ratio of pt to shot total energy for associated tracks; track pt ratio', xbins=20, xmin=0., xmax=2., path=folder + "SubStructure") if (postfix == "BA" or postfix == "CR" or postfix == "EC" or postfix == "TauTrig" or postfix == "Global"): #Calo Histograms igroup.defineHistogram( namer('EMRadius', 'EMRadius', 'Calo', postfix), title='Uncalibrated EM Radius;EM Radius;Number Of Candidates', path=folder + "Calo", xbins=50, xmin=0., xmax=1.2) igroup.defineHistogram( namer('hadRadius', 'hadRadius', 'Calo', postfix), title= 'Hadronic Radius of tau candidates;Hadronic Radius; Number Of Candidates', path=folder + "Calo", xbins=50, xmin=0., xmax=1.) igroup.defineHistogram( namer('stripWidth2', 'stripWidth2', 'Calo', postfix), title= 'Strip Width of tau candidates;Strip Width;Number of Candidates', path=folder + "Calo", xbins=50, xmin=-0.1, xmax=0.12) igroup.defineHistogram( namer('isolFrac', 'isolFrac', 'Calo', postfix), title= 'Isolation Fraction;Et Isolation Fraction;Number of Candidates', path=folder + "Calo", xbins=51, xmin=0.0, xmax=1.02) igroup.defineHistogram( namer('nStrip', 'nStrip', 'Calo', postfix), title= 'Number of strip cells of tau candidates;Number of Strip Cells;Number of Candidates', path=folder + "Calo", xbins=56, xmin=-0.5, xmax=55.5) igroup.defineHistogram( namer('etEMAtEMScale', 'etEMAtEMScale', 'Calo', postfix), title= 'EM energy at the EM scale;EM Et (GeV) );Number of Candidates', path=folder + "Calo", xbins=50, xmin=0., xmax=200.) igroup.defineHistogram( namer('etHadAtEMScale', 'etHadAtEMScale', 'Calo', postfix), title= 'Hadronic Energy at the EM Scale;Had Et (GeV) );Number of Candidates', path=folder + "Calo", xbins=50, xmin=0., xmax=200.) igroup.defineHistogram( namer('centFrac,LB', 'centFracVsLB', 'Calo', postfix), type='TH2F', title= 'Centrality Fraction vs Lumiblock;Centrality Fraction;Lumiblock', path=folder + "Calo", xbins=51, xmin=0, xmax=1.02, ybins=1200, ymin=0., ymax=1200.) igroup.defineHistogram( namer('isolFrac,LB', 'isolFracVsLB', 'Calo', postfix), type='TH2F', title= 'Isolation Fraction vs Lumiblock;Isolation Fraction;Lumiblock', path=folder + "Calo", xbins=51, xmin=0, xmax=1.02, ybins=1200, ymin=0., ymax=1200.) igroup.defineHistogram( namer('centFrac', "centralityFraction", "Calo", postfix), title= 'Centrality Fraction;Centrality Fraction;Number Of Candidates', xbins=70, xmin=0., xmax=1.4, path=folder + "Calo") igroup.defineHistogram( namer('dRmax', "dRmax", "Calo", postfix), title='Maximum delta R;delta R;Number of Candidates', xbins=42, xmin=0., xmax=0.21, path=folder + "Calo") igroup.defineHistogram( namer('tauEta', 'eta', 'Calo', postfix), title='Eta of tau candidates;Eta;Number of Candidates', xbins=51, xmin=-2.55, xmax=2.55, path=folder + "Calo") igroup.defineHistogram( namer('tauPhi', 'phi', 'Calo', postfix), title='Phi of tau candidates;Phi;Number of Candidates', xbins=65, xmin=PHIMIN, xmax=PHIMAX, path=folder + "Calo") igroup.defineHistogram( namer('trkAvgDist', 'trkAvgDist', 'Calo', postfix), title= 'Average Track Distance from Calorimeter Seed;Distance (mm);Number of Candidates', xbins=20, xmin=0., xmax=1., path=folder + "Calo") #Track Histograms! igroup.defineHistogram( namer('d0', 'd0', 'Track', postfix), title='Track d0;Transverse Impact Parameter (mm)', path=folder + "Track", xbins=50, xmin=-5.0, xmax=5.0) igroup.defineHistogram( namer('z0PriVtx', 'z0PriVtx', 'Track', postfix), title=' z0 respected to primary vertex ; Z0 SinTheta (mm)', path=folder + "Track", xbins=50, xmin=-35.0, xmax=35.0) igroup.defineHistogram(namer('etaTrack', 'eta', 'Track', postfix), title='Track Eta;Eta', path=folder + "Track", xbins=51, xmin=-2.55, xmax=2.55) igroup.defineHistogram( namer('leadTrkPt', 'leadTrkPt', 'Track', postfix), title='Pt of Leading track;Transverse Momentum (GeV)', path=folder + "Track", xbins=50, xmin=0., xmax=200.) igroup.defineHistogram( namer('nHighPtTaus', 'nHighPtTaus', 'Track', postfix), title= 'Number of High Pt tau candidates;Number of Taus per Event', xbins=15, xmin=-0.5, xmax=14.5, path=folder + "Track") igroup.defineHistogram( namer('numberOfTRTHighThresholdHits', 'numberOfTRTHighThresholdHits', 'Track', postfix), title= 'Number of TRT High Threshold Hits;Number of High Threshold TRT Hits', path=folder + "Track", xbins=15, xmin=-0.5, xmax=14.5) igroup.defineHistogram( namer('numberOfTRTHighThresholdOutliers', 'numberOfTRTHighThresholdOutliers', 'Track', postfix), title= "Number of TRT High Threshold Outliers;Number of TRT High Threshold Outliers", path=folder + "Track", xbins=26, xmin=-0.5, xmax=25.5) igroup.defineHistogram( namer('numberOfTRTHits', 'numberOfTRTHits', 'Track', postfix), title= 'Number of TRT Low Threshold Hits;Number of Low Threshold TRT Hits', path=folder + "Track", xbins=101, xmin=-0.5, xmax=100.5) igroup.defineHistogram( namer('numberOfTRTOutliers', 'numberOfTRTOutliers', 'Track', postfix), title= "Number of TRT Low Threshold Outliers;Number of TRT Low Threshold Outliers", path=folder + "Track", xbins=31, xmin=-0.5, xmax=25.5) igroup.defineHistogram(namer('ptTrack', 'pT', 'Track', postfix), title='Track pT;Transverse Momentum (GeV)', path=folder + "Track", xbins=60, xmin=0, xmax=300) igroup.defineHistogram(namer('phiTrack', 'phi', 'Track', postfix), title='Track Phi;Phi', path=folder + "Track", xbins=64, xmin=PHIMIN, xmax=PHIMAX) igroup.defineHistogram( namer('trkWidth2', 'trkWidth2', 'Track', postfix), title= 'Weighted Track Width;Momentum-Weighted Width of Track System', path=folder + "Track", xbins=50, xmin=0.0, xmax=0.1) igroup.defineHistogram( namer('ipZ0SinThetaSigLeadTrk', 'ipZ0SinThetaSigLeadTrk', 'Track', postfix), title= 'Impact Parameter z0 Sine Theta Significance of Leading Track;Z0SinTheta Significance', path=folder + "Track", xbins=50, xmin=-10.0, xmax=10.0) igroup.defineHistogram( namer('numberOfPixelHits', 'numberOfPixelHits', 'Track', postfix), title='Number of Pixel Hits;Number of Pixel Hits', path=folder + "Track", xbins=25, xmin=-0.5, xmax=25.5) igroup.defineHistogram( namer('numberOfSCTHits', 'numberOfSCTHits', 'Track', postfix), title='Number of SCT Hits;Number of SCT Hits', path=folder + "Track", xbins=26, xmin=0, xmax=26) igroup.defineHistogram( namer('etOverPtLeadTrack', 'etOverPtLeadTrack', 'Track', postfix), title= 'Et over Pt of lead track of tau candidates;Et/Pt;Number of Candidates', xbins=50, xmin=0., xmax=12., path=folder + "Track") igroup.defineHistogram( namer('ipSigLeadTrk', 'ipSigLeadTrk', 'Track', postfix), title= 'Impact Parameter Significance of Leading Track;Transverse Impact Parameter Significance', xbins=100, xmin=-5., xmax=5., path=folder + "Track") igroup.defineHistogram( namer('massTrkSys', 'massTrkSys', 'Track', postfix), title='Mass of the Track System;Invariant Mass (GeV)', xbins=30, xmin=-1., xmax=5., path=folder + "Track") igroup.defineHistogram( namer('trFlightPathSig', 'trFlightPathSig', 'Track', postfix), title= 'Track Transverse Flight Path Significance;Transverse Flight Path Significance', xbins=125, xmin=-4.5, xmax=8., path=folder + "Track") igroup.defineHistogram( namer('z0', 'z0', 'Track', postfix), title='Track z0;Longitudinal Impact Parameter (mm)', path=folder + "Track", xbins=50, xmin=-35.0, xmax=35.0) if postfix == 'Global' or postfix == "TauTrig" or postfix == "EleTrig" or postfix == "JetTrig": igroup.defineHistogram( namer('LB', 'nTauPerLB', '', postfix), title= 'Total number of tau candidates per LB);Luminosity Block);Number of Candidates', xbins=1000, xmin=0., xmax=1000., path=folder) igroup.defineHistogram( namer('nHighPtTauCandidates', 'nHightPtTauCandidates', '', postfix), title= 'Number of High Pt tau candidates;Number of Taus per Event', xbins=15, xmin=-0.5, xmax=14.5, path=folder) igroup.defineHistogram( namer('NumTracks', 'tauNumTracks', '', postfix), title= 'Number Of Tracks for Tau Candidates;Number Of Tracks;Number Of Candidates', xbins=21, xmin=-0.5, xmax=20.5, path=folder) igroup.defineHistogram( namer('nClusters', 'nCluster', '', postfix), title= 'Number Of CaloTopoClusters;Number Of Clusters;Number Of Candidates', xbins=40, xmin=0., xmax=40., path=folder) igroup.defineHistogram( namer('tauEta,tauEt', 'tauEtVsEta', '', postfix), type='TH2F', title='Tau Et Vs Eta;#eta;Transverse Energy (Gev)', xbins=40, xmin=-2.55, xmax=2.55, ybins=300, ymin=0, ymax=300, path=folder) igroup.defineHistogram( namer('tauPhi,tauEt', 'tauEtVsPhi', '', postfix), type='TH2F', title='EtVsPhi;Phi;Transverse Energy (GeV);', xbins=80, xmin=PHIMIN, xmax=PHIMAX, ybins=300, ymin=-0., ymax=300., path=folder) if postfix == 'Global': #Physics Histograms - I suspect these should be doing some kind of selection, not obvious in the old code. igroup.defineHistogram( namer('tauEta', 'tau_eta', '', postfix), title='Eta of tau candidates;Eta;Number of Candidates', xbins=51, xmin=-2.55, xmax=2.55, path=folder + "Physics/Z") igroup.defineHistogram( namer('tauEta,tauEt', 'tau_pTVsEta', '', postfix), type='TH2F', title='Tau Et Vs Eta;#eta;Transverse Energy (Gev)', xbins=40, xmin=-2.55, xmax=2.55, ybins=300, ymin=0, ymax=300, path=folder + "Physics/Z") #will use different variable when not a placeholder igroup.defineHistogram( namer('tauEta', 'lepton_pTVsEta', '', postfix), title= 'Placeholder for empty histogram;Eta;Number of Candidates', xbins=51, xmin=-2.55, xmax=2.55, path=folder + "Physics/Z") igroup.defineHistogram( namer('tauEta,tauEt', 'tau_pTVsEta', '', postfix), type='TH2F', title='Tau Et Vs Eta;#eta;Transverse Energy (Gev)', xbins=40, xmin=-2.55, xmax=2.55, ybins=300, ymin=0, ymax=300, path=folder + "Physics/W") if postfix == 'HighPt': igroup.defineHistogram(namer('tauEtaEt15,tauPhiEt15', 'tauPhiVsEta_et15', '', postfix), type='TH2F', title='EtaVsEtTitle;Eta;Phi', xbins=30, xmin=-2.55, xmax=2.55, ybins=32, ymin=PHIMIN, ymax=PHIMAX) if postfix == 'HighPtBDTLoose': igroup.defineHistogram( namer('tauEtaEt15BDTLoose,tauPhiEt15BDTLoose', 'tauPhiVsEta_et15_BDTLoose', '', postfix), type='TH2F', title='Phi vs Eta (Et>15, BDTLoose) ;Eta;Phi', xbins=30, xmin=-2.55, xmax=2.55, ybins=32, ymin=PHIMIN, ymax=PHIMAX) ### STEP 6 ### # Finalize. The return value should be a tuple of the ComponentAccumulator # and the sequence containing the created algorithms. If we haven't called # any configuration other than the AthMonitorCfgHelper here, then we can # just return directly (and not create "result" above) return cfgHelper.result()
def JetTagMonitorConfig(inputFlags): '''Function to configures some algorithms in the monitoring system.''' ### STEP 1 ### # Define one top-level monitoring algorithm. The new configuration # framework uses a component accumulator. #from AthenaConfiguration.ComponentAccumulator import ComponentAccumulator #result = ComponentAccumulator() # The following class will make a sequence, configure algorithms, and link # them to GenericMonitoringTools from AthenaMonitoring import AthMonitorCfgHelper helper = AthMonitorCfgHelper(inputFlags, 'JetTagAthMonitorCfg') ### STEP 2 ### # Adding an algorithm to the helper. Here, we will use the jetTagging # algorithm in the AthenaMonitoring package. Just pass the type to the # helper. Then, the helper will instantiate an instance and set up the # base class configuration following the inputFlags. The returned object # is the algorithm. # You can actually make multiple instances of the same algorithm and give # them different configurations from AthenaConfiguration.ComponentFactory import CompFactory #jetTagGeneral = helper.addAlgorithm(JetTagMonitorAlgorithm,'JetTagGeneral') jetTagMonAlg = helper.addAlgorithm(CompFactory.JetTagMonitorAlgorithm, 'JetTagMonAlg') #anotherJetTagMonAlg = helper.addAlgorithm(JetTagMonitorAlgorithm,'AnotherJetTagMonAlg') # If for some really obscure reason you need to instantiate an algorithm # yourself, the AddAlgorithm method will still configure the base # properties and add the algorithm to the monitoring sequence. # helper.AddAlgorithm(myExistingAlg) ### STEP 3 ### # Edit properties of an algorithm # Declare properties jetTagMonAlg.ElectronTrigger_201X = "HLT_e[2-9][0-9]_.*" # electrons 20-99 GeV jetTagMonAlg.MuonTrigger_201X = "HLT_mu[2-9][0-9].*" # muons 20-99 GeV jetTagMonAlg.TriggerChain = '' #jetTagMonAlg.TriggerChain = 'HLT_mu26_ivarmedium' #jetTagMonAlg.TriggerChain = 'HLT_e24_lhtight_nod0' #jetTagMonAlg.RandomHist = True ### STEP 4 ### # Add some tools. N.B. Do not use your own trigger decision tool. Use the # standard one that is included with AthMonitorAlgorithm. # First, add a tool that's set up by a different configuration function. # In this case, CaloNoiseToolCfg returns its own component accumulator, # which must be merged with the one from this function. # from CaloTools.CaloNoiseToolConfig import CaloNoiseToolCfg # caloNoiseAcc, caloNoiseTool = CaloNoiseToolCfg(inputFlags) # result.merge(caloNoiseAcc) # jetTagMonAlg.CaloNoiseTool = caloNoiseTool # Then, add a tool that doesn't have its own configuration function. In # this jetTagging, no accumulator is returned, so no merge is necessary. # from MyDomainPackage.MyDomainPackageConf import MyDomainTool # jetTagMonAlg.MyDomainTool = MyDomainTool() # Add a generic monitoring tool (a "group" in old language). The returned # object here is the standard GenericMonitoringTool. #GeneralGroup = helper.addGroup(jetTagGeneral,'JetTagMonitor') GeneralGroup = helper.addGroup(jetTagMonAlg, 'JetTagMonitor', 'JetTagging') #JetGroup = helper.addGroup(jetTagMonAlg,'JetTagMonitor') #AnotherGroup = helper.addGroup(anotherJetTagMonAlg,'JetTagMonitor') # Add a GMT for the other jetTagging monitor algorithm #shifterGroup = helper.addGroup(shifterTrigEgammaMonAlg,'TrigEgammaMonitor','HLT/EgammaMon/Shifter/') ### STEP 5 ### #title is for plot, x-axis, y-axis #type is type of plot? #path is for folder structure of root output file ### General histograms <----- GeneralGroup.defineHistogram( 'Event_CutFlow', title='Event CutFlow;Pass Event CutFlow;Events', path='Cutflow_plots', xbins=10, xmin=-0.5, xmax=9.5) GeneralGroup.defineHistogram( 'Trigger_CutFlow', title='Trigger CutFlow;Pass Trigger CutFlow;Events', path='Cutflow_plots', xbins=10, xmin=-0.5, xmax=9.5) GeneralGroup.defineHistogram('Jet_CutFlow', title='Jet CutFlow;Pass Jet CutFlow;Jets', path='Cutflow_plots', xbins=10, xmin=-0.5, xmax=9.5) GeneralGroup.defineHistogram('run', title='Run number;Run;Event', path='Run_plots', xbins=500000, xmin=-0.5, xmax=499999.5) GeneralGroup.defineHistogram('lb', title='Lumi Block;LB;Events', path='Run_plots', xbins=1000, xmin=-0.5, xmax=999.5) GeneralGroup.defineHistogram('mu', title='Mu;<mu>;Events', path='Run_plots', xbins=100, xmin=0, xmax=100.0) GeneralGroup.defineHistogram('nPrimVtx', title='Primary vertices;PV;Events', path='Run_plots', xbins=100, xmin=0, xmax=100.0) GeneralGroup.defineHistogram('xPrimVtx', title='Primary vertices X position;X;Events', path='Run_plots', xbins=40, xmin=-2.0, xmax=2.0) GeneralGroup.defineHistogram('yPrimVtx', title='Primary vertices Y position;Y;Events', path='Run_plots', xbins=40, xmin=-2.0, xmax=2.0) GeneralGroup.defineHistogram('zPrimVtx', title='Primary vertices Z position;Z;Events', path='Run_plots', xbins=100, xmin=-250, xmax=250.0) GeneralGroup.defineHistogram( 'nTracks_PV', title='Number of tracks in PV;Tracks in PV;Number of tracks', path='Run_plots', xbins=150, xmin=-0.5, xmax=149.5) GeneralGroup.defineHistogram( 'nTracks', title='Track multiplicity;Tracks per event;Number of events', path='Run_plots', xbins=100, xmin=0, xmax=1000) GeneralGroup.defineHistogram( 'nHitsBLayer', title='Number of IBL hits;Hits on track;Number of IBL hits on track', path='Run_plots', xbins=5, xmin=0, xmax=5) GeneralGroup.defineHistogram( 'nHitsPixel', title= 'Number of Pixel hits;Hits on track;Number of Pixel hits on track', path='Run_plots', xbins=10, xmin=0, xmax=10) GeneralGroup.defineHistogram( 'nHitsSCT', title='Number of SCT hits;Hits on track;Number of SCT hits on track', path='Run_plots', xbins=15, xmin=0, xmax=15) GeneralGroup.defineHistogram( 'nHitsSi', title= 'Number of PIX+SCT hits;Hits on track;Number of PIX+SCT hits on track', path='Run_plots', xbins=25, xmin=0, xmax=25) GeneralGroup.defineHistogram( 'nHitsTRT', title='Number of TRT hits;Hits on track;Number of TRT hits on track', path='Run_plots', xbins=100, xmin=0, xmax=100) GeneralGroup.defineHistogram( 'nHitsID', title='Number of ID hits;Hits on track;Number of ID hits on track', path='Run_plots', xbins=150, xmin=0, xmax=150) GeneralGroup.defineHistogram( 'JetTracks_n', title='Track multiplicity in jet;Tracks;Number of tracks per jet', path='Run_plots', xbins=50, xmin=0, xmax=50) GeneralGroup.defineHistogram('JetTracks_pt', title='pT of tracks in jet;pT;Tracks in jets', path='Run_plots', xbins=100, xmin=0, xmax=100) GeneralGroup.defineHistogram( 'JetTracks_eta', title='#eta of tracks in jet;#eta;Tracks in jets', path='Run_plots', xbins=100, xmin=-2.5, xmax=2.5) GeneralGroup.defineHistogram( 'JetTracks_phi', title='#phi of tracks in jet;#phi;Tracks in jets', path='Run_plots', xbins=100, xmin=-1 * math.pi, xmax=math.pi) GeneralGroup.defineHistogram( 'JetTracks_d0', title='d_0 of tracks in jet;d_0;Tracks in jets', path='Run_plots', xbins=100, xmin=-5, xmax=5) GeneralGroup.defineHistogram( 'JetTracks_z0', title='z_0 of tracks in jet;z_0;Tracks in jets', path='Run_plots', xbins=100, xmin=-300, xmax=300) GeneralGroup.defineHistogram( 'JetTracks_nHitsBLayer', title= 'Number of IBL hits on tracks in jets;Hits on track;Number of IBL hits on track', path='Run_plots', xbins=5, xmin=0, xmax=5) GeneralGroup.defineHistogram( 'JetTracks_nHitsPixel', title= 'Number of Pixel hits on tracks in jets;Hits on track;Number of Pixel hits on track', path='Run_plots', xbins=10, xmin=0, xmax=10) GeneralGroup.defineHistogram( 'JetTracks_nHitsSCT', title= 'Number of SCT hits on tracks in jets;Hits on track;Number of SCT hits on track', path='Run_plots', xbins=15, xmin=0, xmax=15) ### is ttbar histograms <----- #registerHist(*m_monGr_shift, m_jet_mv_w_top = TH1F_LW::create("jet_MV_top",(m_mv_algorithmName+" Tag Weight of Jets in Top Events; "+m_mv_algorithmName+" tag weight").c_str(),int(m_mv_nBins/2),m_mv_rangeStart,m_mv_rangeStop)); #registerHist(*m_monGr_shift, m_jet_top_eff = TH1F_LW::create("jet_top_eff","Fraction of b-tagged Jets in Top Events",1,-0.5,0.5)); #registerHist(*m_monGr_shift, m_jet_pt_top_eff = TH1F_LW::create("jet_pt_top_eff","Fraction of b-tagged Jets in Top Events vs pT; pT [GeV]",10,0.,200.)); GeneralGroup.defineHistogram('muon_PT', title='Muon pT;Muon pT;Events', path='TTbar_plots', xbins=100, xmin=0.0, xmax=200000.0) GeneralGroup.defineHistogram('electron_PT', title='Electron pT;Electron pT;Events', path='TTbar_plots', xbins=100, xmin=0.0, xmax=200000.0) GeneralGroup.defineHistogram( 'nIsoMuons', title='Number of isolated Muons;Isolated muons;Number of events', path='TTbar_plots', xbins=3, xmin=-0.5, xmax=2.5) GeneralGroup.defineHistogram( 'nIsoElectrons', title= 'Number of isolated Electrons;Isolated electrons;Number of events', path='TTbar_plots', xbins=3, xmin=-0.5, xmax=2.5) GeneralGroup.defineHistogram( 'nTTbarGoodJets', title= 'Number of good jets in ttbar events;Good jets per event;Number of events', path='TTbar_plots', xbins=10, xmin=-0.5, xmax=9.5) GeneralGroup.defineHistogram( 'mvTTbarJets', title='MV of jets in ttbar events;Jet MV;Number of jets', path='TTbar_plots', xbins=50, xmin=-1, xmax=1) GeneralGroup.defineHistogram( 'nTTbarJets', title='Total number of ttbar jets;Number of jets;Number of events', path='TTbar_plots', xbins=1, xmin=-0.5, xmax=0.5) GeneralGroup.defineHistogram( 'nTTbarJets_60tag', title= 'Number of ttbar jets passing 60 tag WP; Jets passing 60 tag WP;Number of ttbar jets', path='TTbar_plots', xbins=1, xmin=-0.5, xmax=0.5) GeneralGroup.defineHistogram( 'nTTbarJets_70tag', title= 'Number of ttbar jets passing 70 tag WP; Jets passing 70 tag WP;Number of ttbar jets', path='TTbar_plots', xbins=1, xmin=-0.5, xmax=0.5) GeneralGroup.defineHistogram( 'nTTbarJets_77tag', title= 'Number of ttbar jets passing 77 tag WP; Jets passing 77 tag WP;Number of ttbar jets', path='TTbar_plots', xbins=1, xmin=-0.5, xmax=0.5) GeneralGroup.defineHistogram( 'nTTbarJets_85tag', title= 'Number of ttbar jets passing 85 tag WP; Jets passing 60 tag WP;Number of ttbar jets', path='TTbar_plots', xbins=1, xmin=-0.5, xmax=0.5) GeneralGroup.defineHistogram( 'pass60n,nTTbarJets', type='TEfficiency', title='TTbar jets 60 tag WP Efficiency;ttbar jets;60 tag WP Efficiency', path='Jet_Eff', xbins=1, xmin=-0.5, xmax=0.5) GeneralGroup.defineHistogram( 'pass70n,nTTbarJets', type='TEfficiency', title='TTbar jets 70 tag WP Efficiency;ttbar jets;70 tag WP Efficiency', path='Jet_Eff', xbins=1, xmin=-0.5, xmax=0.5) GeneralGroup.defineHistogram( 'pass77n,nTTbarJets', type='TEfficiency', title='TTbar jets 77 tag WP Efficiency;ttbar jets;77 tag WP Efficiency', path='Jet_Eff', xbins=1, xmin=-0.5, xmax=0.5) GeneralGroup.defineHistogram( 'pass85n,nTTbarJets', type='TEfficiency', title='TTbar jets 85 tag WP Efficiency;ttbar jets;85 tag WP Efficiency', path='Jet_Eff', xbins=1, xmin=-0.5, xmax=0.5) GeneralGroup.defineHistogram( 'ptTTbarJets', title='Number of ttbar jets vs pT;ttbar jet pT;Number of ttbar jets', path='TTbar_plots', xbins=40, xmin=0, xmax=200) GeneralGroup.defineHistogram( 'ptTTbarJets_60tag', title= 'Number of ttbar jets passing 60 tag WP vs pT;ttbar jet pT;Number of ttbar jets', path='TTbar_plots', xbins=40, xmin=0, xmax=200) GeneralGroup.defineHistogram( 'ptTTbarJets_70tag', title= 'Number of ttbar jets passing 70 tag WP vs pT;ttbar jet pT;Number of ttbar jets', path='TTbar_plots', xbins=40, xmin=0, xmax=200) GeneralGroup.defineHistogram( 'ptTTbarJets_77tag', title= 'Number of ttbar jets passing 77 tag WP vs pT;ttbar jet pT;Number of ttbar jets', path='TTbar_plots', xbins=40, xmin=0, xmax=200) GeneralGroup.defineHistogram( 'ptTTbarJets_85tag', title= 'Number of ttbar jets passing 85 tag WP vs pT;ttbar jet pT;Number of ttbar jets', path='TTbar_plots', xbins=40, xmin=0, xmax=200) GeneralGroup.defineHistogram( 'pass60p,ptTTbarJets', type='TEfficiency', title= 'TTbar jets 60 tag WP Efficiency vs pT;ttbar jet pT;60 tag WP Efficiency', path='Jet_Eff', xbins=40, xmin=0.0, xmax=200.0) GeneralGroup.defineHistogram( 'pass70p,ptTTbarJets', type='TEfficiency', title= 'TTbar jets 70 tag WP Efficiency vs pT;ttbar jet pT;70 tag WP Efficiency', path='Jet_Eff', xbins=40, xmin=0.0, xmax=200.0) GeneralGroup.defineHistogram( 'pass77p,ptTTbarJets', type='TEfficiency', title= 'TTbar jets 77 tag WP Efficiency vs pT;ttbar jet pT;77 tag WP Efficiency', path='Jet_Eff', xbins=40, xmin=0.0, xmax=200.0) GeneralGroup.defineHistogram( 'pass85p,ptTTbarJets', type='TEfficiency', title= 'TTbar jets 85 tag WP Efficiency vs pT;ttbar jet pT;85 tag WP Efficiency', path='Jet_Eff', xbins=40, xmin=0.0, xmax=200.0) ### is SMT jet histograms <----- GeneralGroup.defineHistogram( 'nSoftMuons', title='Number of Soft Muons;Muons per event;Number of muons', path='SMT_plots', xbins=3, xmin=-0.5, xmax=2.5) GeneralGroup.defineHistogram( 'nSMTJets', title='Number of SMT Jets;Jets per event;Number of jets', path='SMT_plots', xbins=3, xmin=-0.5, xmax=2.5) GeneralGroup.defineHistogram( 'drSMT', title='DeltaR between jet and soft muon;DR;Number of SMT candidates', path='SMT_plots', xbins=40, xmin=0, xmax=0.4) GeneralGroup.defineHistogram( 'ptSMT_mu', title='pT of SMT Muons;Muon pT [GeV];Number of muons', path='SMT_plots', xbins=50, xmin=0, xmax=100) GeneralGroup.defineHistogram( 'ptSMT_jet', title='pT of SMT Jets;Jet pT [GeV];Number of jets', path='SMT_plots', xbins=100, xmin=0, xmax=300) GeneralGroup.defineHistogram( 'ptSMT_ratio', title='pT ratio of SMT Jets (mu/jet);pT ratio;Number of SMT jets', path='SMT_plots', xbins=50, xmin=0, xmax=1) GeneralGroup.defineHistogram( 'pTrelSMT', title='pTrel of SMT Jets;pTrel;Number of jets', path='SMT_plots', xbins=50, xmin=0, xmax=5) GeneralGroup.defineHistogram('mvSMT', title='MV of SMT Jets;MV;Number of jets', path='SMT_plots', xbins=50, xmin=-1, xmax=1) ### jet quality cutflow histograms <----- #Distributions before selection (all jets from selected events) GeneralGroup.defineHistogram( 'nJets', title='Jet multiplicity;Number of jets;Events', path='Jet_quality', xbins=50, xmin=0, xmax=50) GeneralGroup.defineHistogram('jet_PT', title='Jet pT;Jet pT [GeV];Jets', path='Jet_quality', xbins=100, xmin=0.0, xmax=200.0) GeneralGroup.defineHistogram('jet_ETA', title='Jet eta;Jet #eta;Jets', path='Jet_quality', xbins=100, xmin=-2.5, xmax=2.5) GeneralGroup.defineHistogram('jet_PHI', title='Jet phi;Jet #phi;Jets', path='Jet_quality', xbins=100, xmin=-1 * math.pi, xmax=math.pi) GeneralGroup.defineHistogram('jet_MV', title='Jet MV;Jet MV;Jets', path='Jet_quality', xbins=100, xmin=-1.0, xmax=1.0) #2D maps during selection GeneralGroup.defineHistogram('jet_eta_all,jet_phi_all;jet_MAP_all', title='2D MAP of all jets;Jet #eta;Jet #phi', type='TH2F', path='Jet_quality', xbins=100, xmin=-2.5, xmax=2.5, ybins=200, ymin=-1 * math.pi, ymax=math.pi) GeneralGroup.defineHistogram( 'jet_eta_quality,jet_phi_quality;jet_MAP_quality', title='2D MAP of quality jets;Jet #eta;Jet #phi', type='TH2F', path='Jet_quality', xbins=100, xmin=-2.5, xmax=2.5, ybins=200, ymin=-1 * math.pi, ymax=math.pi) GeneralGroup.defineHistogram( 'jet_eta_kin,jet_phi_kin;jet_MAP_kin', title='2D MAP of jets passing kinematic selection;Jet #eta;Jet #phi', type='TH2F', path='Jet_quality', xbins=100, xmin=-2.5, xmax=2.5, ybins=200, ymin=-1 * math.pi, ymax=math.pi) GeneralGroup.defineHistogram( 'jet_eta_jvt,jet_phi_jvt;jet_MAP_jvt', title='2D MAP of jets passing JVT;Jet #eta;Jet #phi', type='TH2F', path='Jet_quality', xbins=100, xmin=-2.5, xmax=2.5, ybins=200, ymin=-1 * math.pi, ymax=math.pi) GeneralGroup.defineHistogram( 'jet_eta_overlap,jet_phi_overlap;jet_MAP_overlap', title='2D MAP of not overlapping jets;Jet #eta;Jet #phi', type='TH2F', path='Jet_quality', xbins=100, xmin=-2.5, xmax=2.5, ybins=200, ymin=-1 * math.pi, ymax=math.pi) GeneralGroup.defineHistogram('jet_eta_good,jet_phi_good;jet_MAP_good', title='2D MAP of good jets;Jet #eta;Jet #phi', type='TH2F', path='Jet_quality', xbins=100, xmin=-2.5, xmax=2.5, ybins=200, ymin=-1 * math.pi, ymax=math.pi) GeneralGroup.defineHistogram( 'jet_eta_suspect,jet_phi_suspect;jet_MAP_suspect', title='2D MAP of suspect jets;Jet #eta;Jet #phi', type='TH2F', path='Jet_quality', xbins=100, xmin=-2.5, xmax=2.5, ybins=200, ymin=-1 * math.pi, ymax=math.pi) GeneralGroup.defineHistogram('jet_eta_bad,jet_phi_bad;jet_MAP_bad', title='2D MAP of bad jets;Jet #eta;Jet #phi', type='TH2F', path='Jet_quality', xbins=100, xmin=-2.5, xmax=2.5, ybins=200, ymin=-1 * math.pi, ymax=math.pi) GeneralGroup.defineHistogram('jet_eta_smt,jet_phi_smt;jet_MAP_smt', title='2D MAP of SMT jets;Jet #eta;Jet #phi', type='TH2F', path='Jet_quality', xbins=100, xmin=-2.5, xmax=2.5, ybins=200, ymin=-1 * math.pi, ymax=math.pi) #GeneralGroup.defineHistogram('jet_MV_JVT_bef',title='Jet MV before JVT;Jet MV;Jets',path='Jet_quality',xbins=100,xmin=-1.0,xmax=1.0) #GeneralGroup.defineHistogram('jet_MV_JVT_aft',title='Jet MV after JVT;Jet MV;Jets',path='Jet_quality',xbins=100,xmin=-1.0,xmax=1.0) ###Distributions for good jets (passing Good/Suspect/Bad selection) GeneralGroup.defineHistogram('jet_pT_good', title='Good jets pT;Good Jet pT [GeV];Jets', path='Jet_MV', xbins=100, xmin=0.0, xmax=200.0) GeneralGroup.defineHistogram('jet_eta_good', title='Good jets #eta;Good Jet #eta;Jets', path='Jet_MV', xbins=100, xmin=-2.5, xmax=2.5) GeneralGroup.defineHistogram('jet_phi_good', title='Good jets #phi;Good Jet #phi;Jets', path='Jet_MV', xbins=100, xmin=-1 * math.pi, xmax=math.pi) GeneralGroup.defineHistogram('jet_MV_good', title='Good jets MV;Good Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) ### tag weight histograms <----- GeneralGroup.defineHistogram( 'jet_MV_mu_0_30', title='Jet MV in mu bin 1 : <mu> = [0,30];Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'jet_MV_mu_30_50', title='Jet MV in mu bin 2 : <mu> = [30,50];Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'jet_MV_mu_50_100', title='Jet MV in mu bin 3 : <mu> = [50,100];Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'jet_MV_pt_0_20', title='Jet MV in pT bin 1 : pT = [0,20];Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'jet_MV_pt_20_40', title='Jet MV in pT bin 2 : pT = [20,40];Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'jet_MV_pt_40_70', title='Jet MV in pT bin 3 : pT = [40,70];Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'jet_MV_pt_70_100', title='Jet MV in pT bin 4 : pT = [70,100];Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'jet_MV_pt_100_150', title='Jet MV in pT bin 5 : pT = [100,150];Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'jet_MV_pt_150_200', title='Jet MV in pT bin 6 : pT = [150,200];Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'jet_MV_pt_200_1000', title='Jet MV in pT bin 7 : pT = [200,1000];Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'jet_MV_eta_00_05', title='Jet MV in #eta bin 1 : #eta = [0.0,0.5];Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'jet_MV_eta_05_10', title='Jet MV in #eta bin 2 : #eta = [0.5,1.0];Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'jet_MV_eta_10_15', title='Jet MV in #eta bin 3 : #eta = [1.0,1.5];Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'jet_MV_eta_15_20', title='Jet MV in #eta bin 4 : #eta = [1.5,2.0];Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'jet_MV_eta_20_25', title='Jet MV in #eta bin 5 : #eta = [2.0,2.5];Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'jet_MV_phi_00_05', title='Jet MV in #phi bin 1 : #phi = [0.0,0.5];Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'jet_MV_phi_05_10', title='Jet MV in #phi bin 2 : #phi = [0.5,1.0];Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'jet_MV_phi_10_15', title='Jet MV in #phi bin 3 : #phi = [1.0,1.5];Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'jet_MV_phi_15_20', title='Jet MV in #phi bin 4 : #phi = [1.5,2.0];Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'jet_MV_phi_20_25', title='Jet MV in #phi bin 5 : #phi = [2.0,2.5];Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'jet_MV_phi_25_31', title='Jet MV in #phi bin 6 : #phi = [2.5,3.1];Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) #jets passing WPs in eta and phi bins, 2D map and efficiency GeneralGroup.defineHistogram( 'jet_eta_60tag', title= 'Number of jets passing 60 tag WP vs #eta;Jet #eta;Number of jets', path='Jet_MV', xbins=10, xmin=-2.5, xmax=2.5) GeneralGroup.defineHistogram( 'jet_eta_70tag', title= 'Number of jets passing 70 tag WP vs #eta;Jet #eta;Number of jets', path='Jet_MV', xbins=10, xmin=-2.5, xmax=2.5) GeneralGroup.defineHistogram( 'jet_eta_77tag', title= 'Number of jets passing 77 tag WP vs #eta;Jet #eta;Number of jets', path='Jet_MV', xbins=10, xmin=-2.5, xmax=2.5) GeneralGroup.defineHistogram( 'jet_eta_85tag', title= 'Number of jets passing 85 tag WP vs #eta;Jet #eta;Number of jets', path='Jet_MV', xbins=10, xmin=-2.5, xmax=2.5) GeneralGroup.defineHistogram( 'jet_phi_60tag', title= 'Number of jets passing 60 tag WP vs #phi;Jet #phi;Number of jets', path='Jet_MV', xbins=12, xmin=-1 * math.pi, xmax=math.pi) GeneralGroup.defineHistogram( 'jet_phi_70tag', title= 'Number of jets passing 70 tag WP vs #phi;Jet #phi;Number of jets', path='Jet_MV', xbins=12, xmin=-1 * math.pi, xmax=math.pi) GeneralGroup.defineHistogram( 'jet_phi_77tag', title= 'Number of jets passing 77 tag WP vs #phi;Jet #phi;Number of jets', path='Jet_MV', xbins=12, xmin=-1 * math.pi, xmax=math.pi) GeneralGroup.defineHistogram( 'jet_phi_85tag', title= 'Number of jets passing 85 tag WP vs #phi;Jet #phi;Number of jets', path='Jet_MV', xbins=12, xmin=-1 * math.pi, xmax=math.pi) GeneralGroup.defineHistogram( 'jet_eta_60tag,jet_phi_60tag;jet_MAP_60tag', title='2D MAP of jets passing 60 tag WP;Jet #eta;Jet #phi', type='TH2F', path='Jet_MV', xbins=100, xmin=-2.5, xmax=2.5, ybins=200, ymin=-1 * math.pi, ymax=math.pi) GeneralGroup.defineHistogram( 'jet_eta_70tag,jet_phi_70tag;jet_MAP_70tag', title='2D MAP of jets passing 70 tag WP;Jet #eta;Jet #phi', type='TH2F', path='Jet_MV', xbins=100, xmin=-2.5, xmax=2.5, ybins=200, ymin=-1 * math.pi, ymax=math.pi) GeneralGroup.defineHistogram( 'jet_eta_77tag,jet_phi_77tag;jet_MAP_77tag', title='2D MAP of jets passing 77 tag WP;Jet #eta;Jet #phi', type='TH2F', path='Jet_MV', xbins=100, xmin=-2.5, xmax=2.5, ybins=200, ymin=-1 * math.pi, ymax=math.pi) GeneralGroup.defineHistogram( 'jet_eta_85tag,jet_phi_85tag;jet_MAP_85tag', title='2D MAP of jets passing 85 tag WP;Jet #eta;Jet #phi', type='TH2F', path='Jet_MV', xbins=100, xmin=-2.5, xmax=2.5, ybins=200, ymin=-1 * math.pi, ymax=math.pi) GeneralGroup.defineHistogram( 'jet_eta', title= 'Number of jets before passing tag vs #eta;Jet #eta;Number of jets', path='Jet_MV', xbins=10, xmin=-2.5, xmax=2.5) GeneralGroup.defineHistogram( 'pass60e,jet_eta', type='TEfficiency', title='Jets 60 tag WP Efficiency vs #eta;Jet #eta;60 tag WP Efficiency', path='Jet_Eff', xbins=10, xmin=-2.5, xmax=2.5) GeneralGroup.defineHistogram( 'pass70e,jet_eta', type='TEfficiency', title='Jets 70 tag WP Efficiency vs #eta;Jet #eta;70 tag WP Efficiency', path='Jet_Eff', xbins=10, xmin=-2.5, xmax=2.5) GeneralGroup.defineHistogram( 'pass77e,jet_eta', type='TEfficiency', title='Jets 77 tag WP Efficiency vs #eta;Jet #eta;77 tag WP Efficiency', path='Jet_Eff', xbins=10, xmin=-2.5, xmax=2.5) GeneralGroup.defineHistogram( 'pass85e,jet_eta', type='TEfficiency', title='Jets 85 tag WP Efficiency vs #eta;Jet #eta;85 tag WP Efficiency', path='Jet_Eff', xbins=10, xmin=-2.5, xmax=2.5) GeneralGroup.defineHistogram( 'jet_phi', title= 'Number of jets before passing tag vs #phi;Jet #phi;Number of jets', path='Jet_MV', xbins=12, xmin=-1 * math.pi, xmax=math.pi) GeneralGroup.defineHistogram( 'pass60f,jet_phi', type='TEfficiency', title='Jets 60 tag WP Efficiency vs #phi;Jet #phi;60 tag WP Efficiency', path='Jet_Eff', xbins=12, xmin=-1 * math.pi, xmax=math.pi) GeneralGroup.defineHistogram( 'pass70f,jet_phi', type='TEfficiency', title='Jets 70 tag WP Efficiency vs #phi;Jet #phi;70 tag WP Efficiency', path='Jet_Eff', xbins=12, xmin=-1 * math.pi, xmax=math.pi) GeneralGroup.defineHistogram( 'pass77f,jet_phi', type='TEfficiency', title='Jets 77 tag WP Efficiency vs #phi;Jet #phi;77 tag WP Efficiency', path='Jet_Eff', xbins=12, xmin=-1 * math.pi, xmax=math.pi) GeneralGroup.defineHistogram( 'pass85f,jet_phi', type='TEfficiency', title='Jets 85 tag WP Efficiency vs #phi;Jet #phi;85 tag WP Efficiency', path='Jet_Eff', xbins=12, xmin=-1 * math.pi, xmax=math.pi) #2D TEfficiency for 2D MAP of fraction of good jets GeneralGroup.defineHistogram( 'passGood,jet_eta_all,jet_phi_all', type='TEfficiency', title='TEfficiency in 2D;Jet #eta;Jet #phi;Good Jet Efficiency', path='Jet_Eff', xbins=100, xmin=-2.5, xmax=2.5, ybins=200, ymin=-1 * math.pi, ymax=math.pi) ### the same but with suspect jets GeneralGroup.defineHistogram('sus_jet_MV', title='Suspect Jet MV;Suspect Jet MV;Jets', path='Jet_quality', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'sus_jet_MV_pt_0_20', title='Suspect Jet MV in pT bin 1 : pT = [0,20];Suspect Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'sus_jet_MV_pt_20_40', title='Suspect Jet MV in pT bin 2 : pT = [20,40];Suspect Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'sus_jet_MV_pt_40_80', title='Suspect Jet MV in pT bin 3 : pT = [40,80];Suspect Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'sus_jet_MV_pt_80_100', title='Suspect Jet MV in pT bin 4 : pT = [80,100];Suspect Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'sus_jet_MV_pt_100_150', title='Suspect Jet MV in pT bin 5 : pT = [100,150];Suspect Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'sus_jet_MV_pt_150_200', title='Suspect Jet MV in pT bin 6 : pT = [150,200];Suspect Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'sus_jet_MV_pt_200_1000', title= 'Suspect Jet MV in pT bin 7 : pT = [200,1000];Suspect Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'sus_jet_MV_eta_0_05', title= 'Suspect Jet MV in #eta bin 1 : #eta = [0,0.5];Suspect Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'sus_jet_MV_eta_05_10', title= 'Suspect Jet MV in #eta bin 2 : #eta = [0.5,1.0];Suspect Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'sus_jet_MV_eta_10_15', title= 'Suspect Jet MV in #eta bin 3 : #eta = [1.0,1.5];Suspect Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'sus_jet_MV_eta_15_20', title= 'Suspect Jet MV in #eta bin 4 : #eta = [1.5,2.0];Suspect Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'sus_jet_MV_eta_20_25', title= 'Suspect Jet MV in #eta bin 5 : #eta = [2.0,2.5];Suspect Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'sus_jet_MV_phi_0_05', title= 'Suspect Jet MV in #phi bin 1 : #phi = [0,0.5];Suspect Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'sus_jet_MV_phi_05_10', title= 'Suspect Jet MV in #phi bin 2 : #phi = [0.5,1.0];Suspect Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'sus_jet_MV_phi_10_15', title= 'Suspect Jet MV in #phi bin 3 : #phi = [1.0,1.5];Suspect Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'sus_jet_MV_phi_15_20', title= 'Suspect Jet MV in #phi bin 4 : #phi = [1.5,2.0];Suspect Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'sus_jet_MV_phi_20_25', title= 'Suspect Jet MV in #phi bin 5 : #phi = [2.0,2.5];Suspect Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'sus_jet_MV_phi_25_31', title= 'Suspect Jet MV in #phi bin 6 : #phi = [2.5,3.1];Suspect Jet MV;Jets', path='Jet_MV', xbins=100, xmin=-1.0, xmax=1.0) GeneralGroup.defineHistogram( 'sus_jet_eta_pretag', title= 'Number of suspect jets before passing tag vs #eta;Suspect Jet #eta;Number of suspect jets', path='Jet_MV', xbins=10, xmin=-2.5, xmax=2.5) GeneralGroup.defineHistogram( 'sus_jet_eta_60tag', title= 'Number of suspect jets passing 60 tag WP vs #eta;Suspect Jet #eta;Number of suspect jets', path='Jet_MV', xbins=10, xmin=-2.5, xmax=2.5) GeneralGroup.defineHistogram( 'sus_jet_eta_70tag', title= 'Number of suspect jets passing 70 tag WP vs #eta;Suspect Jet #eta;Number of suspect jets', path='Jet_MV', xbins=10, xmin=-2.5, xmax=2.5) GeneralGroup.defineHistogram( 'sus_jet_eta_77tag', title= 'Number of suspect jets passing 77 tag WP vs #eta;Suspect Jet #eta;Number of suspect jets', path='Jet_MV', xbins=10, xmin=-2.5, xmax=2.5) GeneralGroup.defineHistogram( 'sus_jet_eta_85tag', title= 'Number of suspect jets passing 85 tag WP vs #eta;Suspect Jet #eta;Number of suspect jets', path='Jet_MV', xbins=10, xmin=-2.5, xmax=2.5) GeneralGroup.defineHistogram( 'sus_jet_eta_60tag,sus_jet_eta_pretag', type='TEfficiency', title= 'Jets 60 tag WP Efficiency vs #eta;Suspect Jet #eta;60 tag WP Efficiency', path='Jet_MV', xbins=10, xmin=-2.5, xmax=2.5) GeneralGroup.defineHistogram( 'sus_jet_eta_70tag,sus_jet_eta_pretag', type='TEfficiency', title= 'Jets 70 tag WP Efficiency vs #eta;Suspect Jet #eta;70 tag WP Efficiency', path='Jet_MV', xbins=10, xmin=-2.5, xmax=2.5) GeneralGroup.defineHistogram( 'sus_jet_eta_77tag,sus_jet_eta_pretag', type='TEfficiency', title= 'Jets 77 tag WP Efficiency vs #eta;Suspect Jet #eta;77 tag WP Efficiency', path='Jet_MV', xbins=10, xmin=-2.5, xmax=2.5) GeneralGroup.defineHistogram( 'sus_jet_eta_85tag,sus_jet_eta_pretag', type='TEfficiency', title= 'Jets 85 tag WP Efficiency vs #eta;Suspect Jet #eta;85 tag WP Efficiency', path='Jet_MV', xbins=10, xmin=-2.5, xmax=2.5) GeneralGroup.defineHistogram( 'sus_jet_phi_pretag', title= 'Number of suspect jets before passing tag vs #phi;Suspect Jet #phi;Number of suspect jets', path='Jet_MV', xbins=12, xmin=-1 * math.pi, xmax=math.pi) GeneralGroup.defineHistogram( 'sus_jet_phi_60tag', title= 'Number of suspect jets passing 60 tag WP vs #phi;Suspect Jet #phi;Number of suspect jets', path='Jet_MV', xbins=12, xmin=-1 * math.pi, xmax=math.pi) GeneralGroup.defineHistogram( 'sus_jet_phi_70tag', title= 'Number of suspect jets passing 70 tag WP vs #phi;Suspect Jet #phi;Number of suspect jets', path='Jet_MV', xbins=12, xmin=-1 * math.pi, xmax=math.pi) GeneralGroup.defineHistogram( 'sus_jet_phi_77tag', title= 'Number of suspect jets passing 77 tag WP vs #phi;Suspect Jet #phi;Number of suspect jets', path='Jet_MV', xbins=12, xmin=-1 * math.pi, xmax=math.pi) GeneralGroup.defineHistogram( 'sus_jet_phi_85tag', title= 'Number of suspect jets passing 85 tag WP vs #phi;Suspect Jet #phi;Number of suspect jets', path='Jet_MV', xbins=12, xmin=-1 * math.pi, xmax=math.pi) GeneralGroup.defineHistogram( 'sus_jet_phi_60tag,sus_jet_phi_pretag', type='TEfficiency', title= 'Jets 60 tag WP Efficiency vs #phi;Suspect Jet #phi;60 tag WP Efficiency', path='Jet_MV', xbins=12, xmin=-1 * math.pi, xmax=math.pi) GeneralGroup.defineHistogram( 'sus_jet_phi_70tag,sus_jet_phi_pretag', type='TEfficiency', title= 'Jets 70 tag WP Efficiency vs #phi;Suspect Jet #phi;70 tag WP Efficiency', path='Jet_MV', xbins=12, xmin=-1 * math.pi, xmax=math.pi) GeneralGroup.defineHistogram( 'sus_jet_phi_77tag,sus_jet_phi_pretag', type='TEfficiency', title= 'Jets 77 tag WP Efficiency vs #phi;Suspect Jet #phi;77 tag WPEfficiency', path='Jet_MV', xbins=12, xmin=-1 * math.pi, xmax=math.pi) GeneralGroup.defineHistogram( 'sus_jet_phi_85tag,sus_jet_phi_pretag', type='TEfficiency', title= 'Jets 85 tag WP Efficiency vs #phi;Suspect Jet #phi;85 tag WP Efficiency', path='Jet_MV', xbins=12, xmin=-1 * math.pi, xmax=math.pi) GeneralGroup.defineHistogram( 'sus_jet_eta_60tag,sus_jet_phi_60tag;sus_jet_MAP_60tag', title='2D MAP of jets passing 60 tag WP;Jet #eta;Jet #phi', type='TH2F', path='Jet_MV', xbins=100, xmin=-2.5, xmax=2.5, ybins=200, ymin=-1 * math.pi, ymax=math.pi) GeneralGroup.defineHistogram( 'sus_jet_eta_70tag,sus_jet_phi_70tag;sus_jet_MAP_70tag', title='2D MAP of jets passing 70 tag WP;Jet #eta;Jet #phi', type='TH2F', path='Jet_MV', xbins=100, xmin=-2.5, xmax=2.5, ybins=200, ymin=-1 * math.pi, ymax=math.pi) GeneralGroup.defineHistogram( 'sus_jet_eta_77tag,sus_jet_phi_77tag;sus_jet_MAP_77tag', title='2D MAP of jets passing 77 tag WP;Jet #eta;Jet #phi', type='TH2F', path='Jet_MV', xbins=100, xmin=-2.5, xmax=2.5, ybins=200, ymin=-1 * math.pi, ymax=math.pi) GeneralGroup.defineHistogram( 'sus_jet_eta_85tag,sus_jet_phi_85tag;sus_jet_MAP_85tag', title='2D MAP of jets passing 85 tag WP;Jet #eta;Jet #phi', type='TH2F', path='Jet_MV', xbins=100, xmin=-2.5, xmax=2.5, ybins=200, ymin=-1 * math.pi, ymax=math.pi) #1D and 2D Tefficiency examples #aGroup.defineHistogram('pT_passed,pT',type='TEfficiency',title='Test TEfficiency;x;Eff',path='AndInTheDarkness',xbins=100,xmin=0.0,xmax=50.0) #aGroup.defineHistogram('pT_passed,pT,random',type='TEfficiency',title='Test TEfficiency 2D;x;y;Eff',path='AndInTheDarkness',xbins=100,xmin=0.0,xmax=50.0,ybins=10, ymin=0.0, ymax=2.0) ### STEP 6 ### # Finalize. The return value should be a tuple of the ComponentAccumulator # and the sequence containing the created algorithms. If we haven't called # any configuration other than the AthMonitorCfgHelper here, then we can # just return directly (and not create "result" above) return helper.result()
def TrigCaloMonConfig(inputFlags): '''Function to configures some algorithms in the monitoring system.''' import math # The following class will make a sequence, configure algorithms, and link # them to GenericMonitoringTools from AthenaMonitoring import AthMonitorCfgHelper helper = AthMonitorCfgHelper(inputFlags,'TrigCaloAthMonitorCfg') # Finalize. The return value should be a tuple of the ComponentAccumulator # and the sequence containing the created algorithms. If we haven't called # any configuration other than the AthMonitorCfgHelper here, then we can # just return directly (and not create "result" above) # Get BunchCrossingCondAlg from LumiBlockComps.BunchCrossingCondAlgConfig import BunchCrossingCondAlgCfg result=BunchCrossingCondAlgCfg(inputFlags) ################################ # HLT_FastCaloEMClusters # ################################ # Add monitor algorithm from AthenaConfiguration.ComponentFactory import CompFactory L2CaloEMClustersMonAlg = helper.addAlgorithm(CompFactory.HLTCalo_L2CaloEMClustersMonitor, 'HLT_FastCaloEMClustersMonAlg') # Set properties L2CaloEMClustersMonAlg.HLTContainer = 'HLT_FastCaloEMClusters' L2CaloEMClustersMonAlg.OFFContainer = 'egammaClusters' L2CaloEMClustersMonAlg.MonGroupName = 'TrigCaloMonitor' L2CaloEMClustersMonAlg.OFFTypes = [] L2CaloEMClustersMonAlg.HLThighET= 10000.0 L2CaloEMClustersMonAlg.HLTMinET = -1.0 L2CaloEMClustersMonAlg.OFFMinET = -1.0 L2CaloEMClustersMonAlg.MaxDeltaR = 0.04 # Add group L2CaloEMClustersMonGroup = helper.addGroup(L2CaloEMClustersMonAlg,'TrigCaloMonitor','HLT/HLTCalo') ######################## # HLT_Clusters # ######################## # Declare HLT histograms hist_path='HLT_FastCaloEMClusters/HLT_Clusters' L2CaloEMClustersMonGroup.defineHistogram('HLT_num',title='Number of HLT Clusters; Num Clusters; Entries', path=hist_path,xbins=51,xmin=-0.5,xmax=50.5) L2CaloEMClustersMonGroup.defineHistogram('HLT_eta,HLT_phi',title='Number of HLT Clusters; #eta; #phi; ', type='TH2F', path=hist_path,xbins=50,xmin=-5.0,xmax=5.0,ybins=64,ymin=-math.pi,ymax=math.pi) L2CaloEMClustersMonGroup.defineHistogram('HLT_et',title='HLT Clusters E_{T}; E_{T} [GeV]; Entries', path=hist_path,xbins=100,xmin=0.0,xmax=100.0) L2CaloEMClustersMonGroup.defineHistogram('HLT_eta',title='HLT Clusters #eta; #eta; Entries', path=hist_path,xbins=50,xmin=-5.0,xmax=5.0) L2CaloEMClustersMonGroup.defineHistogram('HLT_phi',title='HLT Cluster #phi; #phi; Entries', path=hist_path,xbins=64,xmin=-math.pi,xmax=math.pi) L2CaloEMClustersMonGroup.defineHistogram('HLT_size',title='HLT Cluster Size; Number of Cells; Entries', path=hist_path,xbins=91,xmin=-10.0,xmax=1810.0) L2CaloEMClustersMonGroup.defineHistogram('HLT_bc,HLT_et;HLT_et_vs_BC',title='HLT Clusters E_{T} vs BC; BCs from front of bunch train; <E_{T}> [GeV]', type='TProfile', path=hist_path,xbins=21,xmin=-0.5,xmax=20.5) # Declare high-ET HLT histograms L2CaloEMClustersMonGroup.defineHistogram('HLT_barrel_high_et_num',title='Number of high-E_{T} HLT Clusters; Num Clusters; Entries', path=hist_path,xbins=101,xmin=-0.5,xmax=100.5) L2CaloEMClustersMonGroup.defineHistogram('HLT_eta,HLT_phi;HLT_barrel_high_et_phi_vs_HLT_barrel_high_et_eta',cutmask="HLT_barrel_high_et",title='Number of high-E_{T} HLT Clusters; #eta; #phi; ', type='TH2F', path=hist_path,xbins=50,xmin=-2.6,xmax=2.6,ybins=64,ymin=-math.pi,ymax=math.pi) L2CaloEMClustersMonGroup.defineHistogram('HLT_et;HLT_barrel_high_et_et',cutmask="HLT_barrel_high_et",title='high-E_{T} HLT Clusters E_{T}; E_{T} [GeV]; Entries', path=hist_path,xbins=100,xmin=0.0,xmax=100.0) L2CaloEMClustersMonGroup.defineHistogram('HLT_eta;HLT_barrel_high_et_eta',cutmask="HLT_barrel_high_et",title='high-E_{T} HLT Clusters #eta; #eta; Entries', path=hist_path,xbins=50,xmin=-2.6,xmax=2.6) L2CaloEMClustersMonGroup.defineHistogram('HLT_phi;HLT_barrel_high_et_phi',cutmask="HLT_barrel_high_et",title='high-E_{T} HLT Cluster #phi; #phi; Entries', path=hist_path,xbins=64,xmin=-math.pi,xmax=math.pi) L2CaloEMClustersMonGroup.defineHistogram('HLT_size;HLT_barrel_high_et_size',cutmask="HLT_barrel_high_et",title='high-E_{T} HLT Cluster Size; Number of Cells; Entries', path=hist_path,xbins=91,xmin=-10.0,xmax=1810.0) L2CaloEMClustersMonGroup.defineHistogram('HLT_bc,HLT_et;HLT_barrel_high_et_vs_BC',cutmask="HLT_barrel_high_et",title='hight-E_{T} HLT Clusters E_{T} vs BC; BCs from front of bunch train; <E_{T}> [GeV]', type='TProfile', path=hist_path,xbins=21,xmin=-0.5,xmax=20.5) ######################## # OFF_Clusters # ######################## # Declare OFF histograms hist_path='HLT_FastCaloEMClusters/OFF_Clusters' L2CaloEMClustersMonGroup.defineHistogram('OFF_num',title='Number of OFF Clusters; Num Clusters; Entries', path=hist_path,xbins=101,xmin=-1.0,xmax=201.0) L2CaloEMClustersMonGroup.defineHistogram('OFF_eta,OFF_phi',title='Number of OFF Clusters; #eta; #phi; ', type='TH2F', path=hist_path,xbins=50,xmin=-5.0,xmax=5.0,ybins=64,ymin=-math.pi,ymax=math.pi) L2CaloEMClustersMonGroup.defineHistogram('OFF_et',title='OFF Clusters E_{T}; E_{T} [GeV]; Entries', path=hist_path,xbins=100,xmin=0.0,xmax=100.0) L2CaloEMClustersMonGroup.defineHistogram('OFF_eta',title='OFF Clusters #eta; #eta; Entries', path=hist_path,xbins=50,xmin=-5.0,xmax=5.0) L2CaloEMClustersMonGroup.defineHistogram('OFF_phi',title='OFF Cluster #phi; #phi; Entries', path=hist_path,xbins=64,xmin=-math.pi,xmax=math.pi) L2CaloEMClustersMonGroup.defineHistogram('OFF_type',title='OFF Cluster Type; Size Enum; Entries', path=hist_path,xbins=16,xmin=0.5,xmax=16.5) L2CaloEMClustersMonGroup.defineHistogram('HLT_bc,OFF_et;OFF_et_vs_BC',title='OFF Clusters E_{T} vs BC; BCs from front of bunch train; <E_{T}> [GeV]', type='TProfile', path=hist_path,xbins=21,xmin=-0.5,xmax=20.5) ######################## # HLT matched to OFF # ######################## # Declare HLT matched HLT vs. OFF cluster histograms hist_path='HLT_FastCaloEMClusters/HLT_Matched_to_OFF' L2CaloEMClustersMonGroup.defineHistogram('HLT_matched_fraction',title='Fraction of HLT clusters matched to HLT clusters; Matched fraction; Entries', path=hist_path,xbins=100,xmin=0.0,xmax=1.0) L2CaloEMClustersMonGroup.defineHistogram('HLT_vs_OFF_minimum_delta_r',title='HLT vs OFF Cluster #DeltaR; #DeltaR; Entries', path=hist_path,xbins=50,xmin=0.0,xmax=0.1) L2CaloEMClustersMonGroup.defineHistogram('HLT_vs_OFF_minimum_delta_eta',cutmask='HLT_with_OFF_match',title='HLT vs OFF Cluster #Delta#eta; #eta_{_{OFF}} - #eta_{_{HLT}}; Entries', path=hist_path,xbins=50,xmin=-0.2,xmax=0.2) L2CaloEMClustersMonGroup.defineHistogram('HLT_vs_OFF_minimum_delta_phi',cutmask='HLT_with_OFF_match',title='HLT vs OFF Cluster #Delta#phi; #phi_{_{OFF}} - #phi_{_{HLT}}; Entries', path=hist_path,xbins=50,xmin=-0.01,xmax=0.09) L2CaloEMClustersMonGroup.defineHistogram('HLT_et,OFF_match_et;HLT_with_OFF_match_et_vs_OFF_match_et',cutmask='HLT_with_OFF_match',title='HLT vs OFF Cluster E_{T}; E_{T_{OFF}} [GeV]; E_{T_{HLT}} [GeV]', type='TH2F', path=hist_path,xbins=100,xmin=0.0,xmax=100.0, ybins=100,ymin=0.0,ymax=100.0) L2CaloEMClustersMonGroup.defineHistogram('HLT_vs_OFF_resolution',cutmask='HLT_with_OFF_match',title='HLT vs OFF Cluster #DeltaE_{T} / E_{T}; E_{T_{OFF}} - E_{T_{HLT}} / E_{T_{OFF}} [%]; Entries', path=hist_path,xbins=100,xmin=-40.0,xmax=40.0) L2CaloEMClustersMonGroup.defineHistogram('HLT_et,HLT_vs_OFF_resolution;HLT_vs_OFF_resolution_vs_HLT_with_OFF_match_et',cutmask='HLT_with_OFF_match',title='HLT vs OFF Cluster < #DeltaE_{T} / E_{T} >; E_{T,OFF} [GeV]; < E_{T_{OFF}} - E_{T_{HLT}} / E_{T_{OFF}} >', type='TProfile', path=hist_path,xbins=100,xmin=0.0,xmax=100.0) L2CaloEMClustersMonGroup.defineHistogram('HLT_eta,HLT_vs_OFF_resolution;HLT_vs_OFF_resolution_vs_HLT_with_OFF_match_eta',cutmask='HLT_with_OFF_match',title='HLT vs OFF Cluster < #DeltaE_{T} / E_{T} >; #eta_{_{ OFF}}; < E_{T_{OFF}} - E_{T_{HLT}} / E_{T_{OFF}} >', type='TProfile', path=hist_path,xbins=20,xmin=-5.0,xmax=5.0) L2CaloEMClustersMonGroup.defineHistogram('HLT_phi,HLT_vs_OFF_resolution;HLT_vs_OFF_resolution_vs_HLT_with_OFF_match_phi',cutmask='HLT_with_OFF_match',title='HLT vs OFF Cluster < #DeltaE_{T} / E_{T} >; #phi_{_{ OFF}}; < E_{T_{OFF}} - E_{T_{HLT}} / E_{T_{OFF}} >', type='TProfile', path=hist_path,xbins=16,xmin=-math.pi,xmax=math.pi) L2CaloEMClustersMonGroup.defineHistogram('HLT_eta,HLT_phi,HLT_vs_OFF_resolution;HLT_vs_OFF_resolution_vs_HLT_with_OFF_match_phi_vs_HLT_with_OFF_match_eta',cutmask='HLT_with_OFF_match',title='HLT vs OFF Cluster < #DeltaE_{T} / E_{T} >; #eta; #phi', type='TProfile2D', path=hist_path,xbins=50,xmin=-5.0,xmax=5.0,ybins=64,ymin=-math.pi,ymax=math.pi) # Declare OFF histograms with HLT matches L2CaloEMClustersMonGroup.defineHistogram('HLT_with_OFF_match_num',title='Number of HLT Clusters (With OFF Matches); Num Clusters; Entries', path=hist_path,xbins=101,xmin=-1.0,xmax=201.0) L2CaloEMClustersMonGroup.defineHistogram('HLT_eta,HLT_phi;HLT_with_OFF_match_eta_vs_HLT_with_OFF_match_phi',cutmask='HLT_with_OFF_match',title='Number of HLT Clusters (With OFF Matches); #eta; #phi; ', type='TH2F', path=hist_path,xbins=50,xmin=-5.0,xmax=5.0,ybins=64,ymin=-math.pi,ymax=math.pi) L2CaloEMClustersMonGroup.defineHistogram('HLT_et;HLT_with_OFF_match_et',cutmask='HLT_with_OFF_match',title='HLT Clusters E_{T} (With OFF Matches); E_{T} [GeV]; Entries', path=hist_path,xbins=100,xmin=0.0,xmax=100.0) L2CaloEMClustersMonGroup.defineHistogram('HLT_eta;HLT_with_OFF_match_eta',cutmask='HLT_with_OFF_match',title='HLT Clusters #eta (With OFF Matches); #eta; Entries', path=hist_path,xbins=50,xmin=-5.0,xmax=5.0) L2CaloEMClustersMonGroup.defineHistogram('HLT_phi;HLT_with_OFF_match_phi',cutmask='HLT_with_OFF_match',title='HLT Cluster #phi (With OFF Matches); #phi; Entries', path=hist_path,xbins=64,xmin=-math.pi,xmax=math.pi) L2CaloEMClustersMonGroup.defineHistogram('HLT_bc,HLT_et;HLT_with_OFF_match_et_vs_BC',cutmask='HLT_with_OFF_match',title='HLT Clusters E_{T} (With OFF Matches) vs BC; BCs from front of bunch train; <E_{T}> [GeV]', type='TProfile', path=hist_path,xbins=21,xmin=-0.5,xmax=20.5) # Declare OFF histograms without HLT matches L2CaloEMClustersMonGroup.defineHistogram('HLT_no_OFF_match_num',title='Number of HLT Clusters (No OFF Matches); Num Clusters; Entries', path=hist_path,xbins=101,xmin=-1.0,xmax=201.0) L2CaloEMClustersMonGroup.defineHistogram('HLT_eta,HLT_phi;HLT_no_OFF_match_eta_vs_HLT_no_OFF_match_phi',cutmask='HLT_no_OFF_match',title='Number of HLT Clusters (No OFF Matches); #eta; #phi; ', type='TH2F', path=hist_path,xbins=50,xmin=-5.0,xmax=5.0,ybins=64,ymin=-math.pi,ymax=math.pi) L2CaloEMClustersMonGroup.defineHistogram('HLT_et;HLT_no_OFF_match_et',cutmask='HLT_no_OFF_match',title='HLT Clusters E_{T} (No OFF Matches); E_{T} [GeV]; Entries', path=hist_path,xbins=100,xmin=0.0,xmax=100.0) L2CaloEMClustersMonGroup.defineHistogram('HLT_eta;HLT_no_OFF_match_eta',cutmask='HLT_no_OFF_match',title='HLT Clusters #eta (No OFF Matches); #eta; Entries', path=hist_path,xbins=50,xmin=-5.0,xmax=5.0) L2CaloEMClustersMonGroup.defineHistogram('HLT_phi;HLT_no_OFF_match_phi',cutmask='HLT_no_OFF_match',title='HLT Cluster #phi (No OFF Matches); #phi; Entries', path=hist_path,xbins=64,xmin=-math.pi,xmax=math.pi) L2CaloEMClustersMonGroup.defineHistogram('HLT_bc,HLT_et;HLT_no_OFF_match_et_vs_BC',cutmask='HLT_no_OFF_match',title='HLT Clusters E_{T} (No OFF Matches) vs BC; BCs from front of bunch train; <E_{T}> [GeV]', type='TProfile', path=hist_path,xbins=21,xmin=-0.5,xmax=20.5) ######################## # OFF matched to HLT # ######################## # Declare OFF matched HLT vs. OFF cluster histograms hist_path='HLT_FastCaloEMClusters/OFF_Matched_to_HLT' L2CaloEMClustersMonGroup.defineHistogram('OFF_matched_fraction',title='Fraction of OFF clusters matched to HLT clusters; Matched fraction; Entries', path=hist_path,xbins=100,xmin=0.0,xmax=1.0) L2CaloEMClustersMonGroup.defineHistogram('OFF_vs_HLT_minimum_delta_r',title='HLT vs OFF Cluster #DeltaR; #DeltaR; Entries', path=hist_path,xbins=50,xmin=0.0,xmax=0.1) L2CaloEMClustersMonGroup.defineHistogram('OFF_vs_HLT_minimum_delta_eta',cutmask='OFF_with_HLT_match',title='HLT vs OFF Cluster #Delta#eta; #eta_{_{OFF}} - #eta_{_{HLT}}; Entries', path=hist_path,xbins=50,xmin=-0.2,xmax=0.2) L2CaloEMClustersMonGroup.defineHistogram('OFF_vs_HLT_minimum_delta_phi',cutmask='OFF_with_HLT_match',title='HLT vs OFF Cluster #Delta#phi; #phi_{_{OFF}} - #phi_{_{HLT}}; Entries', path=hist_path,xbins=50,xmin=-0.01,xmax=0.09) L2CaloEMClustersMonGroup.defineHistogram('OFF_et,HLT_match_et;HLT_match_et_vs_OFF_with_HLT_match_et',cutmask='OFF_with_HLT_match',title='HLT vs OFF Cluster E_{T}; E_{T_{OFF}} [GeV]; E_{T_{HLT}} [GeV]', type='TH2F', path=hist_path,xbins=100,xmin=0.0,xmax=100.0, ybins=100,ymin=0.0,ymax=100.0) L2CaloEMClustersMonGroup.defineHistogram('OFF_vs_HLT_resolution',cutmask='OFF_with_HLT_match',title='HLT vs OFF Cluster #DeltaE_{T} / E_{T}; E_{T_{OFF}} - E_{T_{HLT}} / E_{T_{OFF}} [%]; Entries', path=hist_path,xbins=100,xmin=-40.0,xmax=40.0) L2CaloEMClustersMonGroup.defineHistogram('OFF_et,OFF_vs_HLT_resolution;OFF_vs_HLT_resolution_vs_OFF_with_HLT_match_et',cutmask='OFF_with_HLT_match',title='HLT vs OFF Cluster < #DeltaE_{T} / E_{T} >; E_{T,OFF} [GeV]; < E_{T_{OFF}} - E_{T_{HLT}} / E_{T_{OFF}} >', type='TProfile', path=hist_path,xbins=100,xmin=0.0,xmax=100.0) L2CaloEMClustersMonGroup.defineHistogram('OFF_eta,OFF_vs_HLT_resolution;OFF_vs_HLT_resolution_vs_OFF_with_HLT_match_eta',cutmask='OFF_with_HLT_match',title='HLT vs OFF Cluster < #DeltaE_{T} / E_{T} >; #eta_{_{ OFF}}; < E_{T_{OFF}} - E_{T_{HLT}} / E_{T_{OFF}} >', type='TProfile', path=hist_path,xbins=20,xmin=-5.0,xmax=5.0) L2CaloEMClustersMonGroup.defineHistogram('OFF_phi,OFF_vs_HLT_resolution;OFF_vs_HLT_resolution_vs_OFF_with_HLT_match_phi',cutmask='OFF_with_HLT_match',title='HLT vs OFF Cluster < #DeltaE_{T} / E_{T} >; #phi_{_{ OFF}}; < E_{T_{OFF}} - E_{T_{HLT}} / E_{T_{OFF}} >', type='TProfile', path=hist_path,xbins=16,xmin=-math.pi,xmax=math.pi) L2CaloEMClustersMonGroup.defineHistogram('OFF_eta,OFF_phi,OFF_vs_HLT_resolution;OFF_vs_HLT_resolution_vs_OFF_with_HLT_match_phi_vs_OFF_with_HLT_match_eta',cutmask='OFF_with_HLT_match',title='HLT vs OFF Cluster < #DeltaE_{T} / E_{T} >; #eta; #phi', type='TProfile2D', path=hist_path,xbins=50,xmin=-5.0,xmax=5.0,ybins=64,ymin=-math.pi,ymax=math.pi) # Declare OFF histograms with HLT matches L2CaloEMClustersMonGroup.defineHistogram('OFF_with_HLT_match_num',title='Number of OFF Clusters (With HLT Matches); Num Clusters; Entries', path=hist_path,xbins=101,xmin=-1.0,xmax=201.0) L2CaloEMClustersMonGroup.defineHistogram('OFF_eta,OFF_phi;OFF_with_HLT_match_phi_vs_OFF_with_HLT_match_eta',cutmask='OFF_with_HLT_match',title='Number of OFF Clusters (With HLT Matches); #eta; #phi; ', type='TH2F', path=hist_path,xbins=50,xmin=-5.0,xmax=5.0,ybins=64,ymin=-math.pi,ymax=math.pi) L2CaloEMClustersMonGroup.defineHistogram('OFF_et;OFF_with_HLT_match_et',cutmask='OFF_with_HLT_match',title='OFF Clusters E_{T} (With HLT Matches); E_{T} [GeV]; Entries', path=hist_path,xbins=100,xmin=0.0,xmax=100.0) L2CaloEMClustersMonGroup.defineHistogram('OFF_eta;OFF_with_HLT_match_eta',cutmask='OFF_with_HLT_match',title='OFF Clusters #eta (With HLT Matches); #eta; Entries', path=hist_path,xbins=50,xmin=-5.0,xmax=5.0) L2CaloEMClustersMonGroup.defineHistogram('OFF_phi;OFF_with_HLT_match_phi',cutmask='OFF_with_HLT_match',title='OFF Cluster #phi (With HLT Matches); #phi; Entries', path=hist_path,xbins=64,xmin=-math.pi,xmax=math.pi) L2CaloEMClustersMonGroup.defineHistogram('OFF_type;OFF_with_HLT_match_type',cutmask='OFF_with_HLT_match',title='OFF Cluster Type (With HLT Matches); Size Enum; Entries', path=hist_path,xbins=16,xmin=0.5,xmax=16.5) L2CaloEMClustersMonGroup.defineHistogram('HLT_bc,OFF_et;OFF_with_HLT_match_et_vs_BC',cutmask='OFF_with_HLT_match',title='OFF Clusters E_{T} (With HLT Matches) vs BC; BCs from front of bunch train; <E_{T}> [GeV]', type='TProfile', path=hist_path,xbins=21,xmin=-0.5,xmax=20.5) # Declare OFF histograms without HLT matches L2CaloEMClustersMonGroup.defineHistogram('OFF_no_HLT_match_num',title='Number of OFF Clusters (No HLT Matches); Num Clusters; Entries', path=hist_path,xbins=101,xmin=-1.0,xmax=201.0) L2CaloEMClustersMonGroup.defineHistogram('OFF_eta,OFF_phi;OFF_no_HLT_match_phi_vs_OFF_no_HLT_match_eta',cutmask='OFF_no_HLT_match',title='Number of OFF Clusters (No HLT Matches); #eta; #phi; ', type='TH2F', path=hist_path,xbins=50,xmin=-5.0,xmax=5.0,ybins=64,ymin=-math.pi,ymax=math.pi) L2CaloEMClustersMonGroup.defineHistogram('OFF_et;OFF_no_HLT_match_et',cutmask='OFF_no_HLT_match',title='OFF Clusters E_{T} (No HLT Matches); E_{T} [GeV]; Entries', path=hist_path,xbins=100,xmin=0.0,xmax=100.0) L2CaloEMClustersMonGroup.defineHistogram('OFF_eta;OFF_no_HLT_match_eta',cutmask='OFF_no_HLT_match',title='OFF Clusters #eta (No HLT Matches); #eta; Entries', path=hist_path,xbins=50,xmin=-5.0,xmax=5.0) L2CaloEMClustersMonGroup.defineHistogram('OFF_phi;OFF_no_HLT_match_phi',cutmask='OFF_no_HLT_match',title='OFF Cluster #phi (No HLT Matches); #phi; Entries', path=hist_path,xbins=64,xmin=-math.pi,xmax=math.pi) L2CaloEMClustersMonGroup.defineHistogram('OFF_type;OFF_no_HLT_match_type',cutmask='OFF_no_HLT_match',title='OFF Cluster Type (No HLT Matches); Size Enum; Entries', path=hist_path,xbins=16,xmin=0.5,xmax=16.5) L2CaloEMClustersMonGroup.defineHistogram('HLT_bc,OFF_et;OFF_no_HLT_match_et_vs_BC',cutmask='OFF_no_HLT_match',title='OFF Clusters E_{T} (No HLT Matches) vs BC; BCs from front of bunch train; <E_{T}> [GeV]', type='TProfile', path=hist_path,xbins=21,xmin=-0.5,xmax=20.5) ################################ # HLT_TopoCaloClusters # ################################ # Add monitor algorithm TopoCaloClustersFSMonAlg = helper.addAlgorithm(CompFactory.HLTCalo_TopoCaloClustersMonitor, 'HLT_TopoCaloClustersFSMonAlg') TopoCaloClustersRoIMonAlg = helper.addAlgorithm(CompFactory.HLTCalo_TopoCaloClustersMonitor, 'HLT_TopoCaloClustersRoIMonAlg') TopoCaloClustersLCMonAlg = helper.addAlgorithm(CompFactory.HLTCalo_TopoCaloClustersMonitor, 'HLT_TopoCaloClustersLCMonAlg') TopoCaloClustersFSMonAlg.HLTContainer = 'HLT_TopoCaloClustersFS' TopoCaloClustersRoIMonAlg.HLTContainer = 'HLT_TopoCaloClustersRoI' TopoCaloClustersLCMonAlg.HLTContainer = 'HLT_TopoCaloClustersLC' # Loop over all three monitoring algorithms algs = [TopoCaloClustersFSMonAlg, TopoCaloClustersRoIMonAlg, TopoCaloClustersLCMonAlg] path_names = ['HLT_TopoCaloClustersFS', 'HLT_TopoCaloClustersRoI', 'HLT_TopoCaloClustersLC'] TopoCaloClustersMonGroup = [] for i in range(len(algs)): # Set properties algs[i].OFFContainer = 'CaloCalTopoClusters' algs[i].MonGroupName = 'TrigCaloMonitor' algs[i].HLTTypes = [] algs[i].OFFTypes = [] algs[i].HLThighET= 5000.0 algs[i].HLTMinET = 500.0 algs[i].OFFMinET = 500.0 algs[i].MatchType = False algs[i].MaxDeltaR = 0.04 # Add group TopoCaloClustersMonGroup.append(helper.addGroup(algs[i], 'TrigCaloMonitor','HLT/HLTCalo')) ######################## # HLT_Clusters # ######################## # Declare HLT histograms TopoCaloClustersMonGroup[i].defineHistogram('HLT_num',title='Number of HLT Clusters; Num Clusters; Entries', path=path_names[i]+'/HLT_Clusters',xbins=101,xmin=-10.0,xmax=2010.0) TopoCaloClustersMonGroup[i].defineHistogram('HLT_eta,HLT_phi',title='Number of HLT Clusters; #eta; #phi; ', type='TH2F', path=path_names[i]+'/HLT_Clusters',xbins=50,xmin=-5.0,xmax=5.0,ybins=64,ymin=-math.pi,ymax=math.pi) TopoCaloClustersMonGroup[i].defineHistogram('HLT_et',title='HLT Clusters E_{T}; E_{T} [GeV]; Entries', path=path_names[i]+'/HLT_Clusters',xbins=100,xmin=0.0,xmax=100.0) TopoCaloClustersMonGroup[i].defineHistogram('HLT_eta',title='HLT Clusters #eta; #eta; Entries', path=path_names[i]+'/HLT_Clusters',xbins=50,xmin=-5.0,xmax=5.0) TopoCaloClustersMonGroup[i].defineHistogram('HLT_phi',title='HLT Cluster #phi; #phi; Entries', path=path_names[i]+'/HLT_Clusters',xbins=64,xmin=-math.pi,xmax=math.pi) TopoCaloClustersMonGroup[i].defineHistogram('HLT_type',title='HLT Cluster Type; Size Enum; Entries', path=path_names[i]+'/HLT_Clusters',xbins=16,xmin=0.5,xmax=16.5) TopoCaloClustersMonGroup[i].defineHistogram('HLT_time',title='HLT Cluster time; time; Entries', path=path_names[i]+'/HLT_Clusters',xbins=60,xmin=-10.0,xmax=10.0) TopoCaloClustersMonGroup[i].defineHistogram('HLT_et,HLT_time',title='Number of HLT Clusters; E_{T} [GeV]; Time', type='TProfile', path=path_names[i]+'/HLT_Clusters',xbins=50,xmin=0.0,xmax=100.0) TopoCaloClustersMonGroup[i].defineHistogram('HLT_size',title='HLT Cluster Size; Number of Cells; Entries', path=path_names[i]+'/HLT_Clusters',xbins=91,xmin=-10.0,xmax=1810.0) TopoCaloClustersMonGroup[i].defineHistogram('HLT_bc,HLT_et;HLT_et_vs_BC',title='HLT Clusters E_{T} vs BC; BCs from front of bunch train; <E_{T}> [GeV]', type='TProfile', path=path_names[i]+'/HLT_Clusters',xbins=21,xmin=-0.5,xmax=20.5) # Declare high-ET HLT histograms TopoCaloClustersMonGroup[i].defineHistogram('HLT_barrel_high_et_num',title='Number of high-E_{T} HLT Clusters; Num Clusters; Entries', path=path_names[i]+'/HLT_Clusters',xbins=101,xmin=-0.5,xmax=100.5) TopoCaloClustersMonGroup[i].defineHistogram('HLT_eta,HLT_phi;HLT_barrel_high_et_phi_vs_HLT_barrel_high_et_eta',cutmask="HLT_barrel_high_et",title='Number of high-E_{T} HLT Clusters; #eta; #phi; ', type='TH2F', path=path_names[i]+'/HLT_Clusters',xbins=50,xmin=-2.6,xmax=2.6,ybins=64,ymin=-math.pi,ymax=math.pi) TopoCaloClustersMonGroup[i].defineHistogram('HLT_et;HLT_barrel_high_et_et',cutmask="HLT_barrel_high_et",title='high-E_{T} HLT Clusters E_{T}; E_{T} [GeV]; Entries', path=path_names[i]+'/HLT_Clusters',xbins=100,xmin=0.0,xmax=100.0) TopoCaloClustersMonGroup[i].defineHistogram('HLT_eta;HLT_barrel_high_et_eta',cutmask="HLT_barrel_high_et",title='high-E_{T} HLT Clusters #eta; #eta; Entries', path=path_names[i]+'/HLT_Clusters',xbins=50,xmin=-2.6,xmax=2.6) TopoCaloClustersMonGroup[i].defineHistogram('HLT_phi;HLT_barrel_high_et_phi',cutmask="HLT_barrel_high_et",title='high-E_{T} HLT Cluster #phi; #phi; Entries', path=path_names[i]+'/HLT_Clusters',xbins=64,xmin=-math.pi,xmax=math.pi) TopoCaloClustersMonGroup[i].defineHistogram('HLT_type;HLT_barrel_high_et_type',cutmask="HLT_barrel_high_et",title='high-E_{T} HLT Cluster Type; Size Enum; Entries', path=path_names[i]+'/HLT_Clusters',xbins=16,xmin=0.5,xmax=16.5) TopoCaloClustersMonGroup[i].defineHistogram('HLT_time;HLT_barrel_high_et_time',cutmask="HLT_barrel_high_et",title='high-E_{T} HLT Cluster time; time; Entries', path=path_names[i]+'/HLT_Clusters',xbins=60,xmin=-10.0,xmax=10.0) TopoCaloClustersMonGroup[i].defineHistogram('HLT_et,HLT_time;HLT_barrel_high_et_time_vs_HLT_barrel_high_et_et',cutmask="HLT_barrel_high_et",title='Number of high-E_{T} HLT Clusters; E_{T} [GeV]; Time', type='TProfile', path=path_names[i]+'/HLT_Clusters',xbins=50,xmin=0.0,xmax=100.0) TopoCaloClustersMonGroup[i].defineHistogram('HLT_size;HLT_barrel_high_et_size',cutmask="HLT_barrel_high_et",title='high-E_{T} HLT Cluster Size; Number of Cells; Entries', path=path_names[i]+'/HLT_Clusters',xbins=91,xmin=-10.0,xmax=1810.0) TopoCaloClustersMonGroup[i].defineHistogram('HLT_bc,HLT_et;HLT_barrel_high_et_vs_BC',cutmask="HLT_barrel_high_et",title='hight-E_{T} HLT Clusters E_{T} vs BC; BCs from front of bunch train; <E_{T}> [GeV]', type='TProfile', path=path_names[i]+'/HLT_Clusters',xbins=21,xmin=-0.5,xmax=20.5) ######################## # OFF_Clusters # ######################## # Declare OFF histograms TopoCaloClustersMonGroup[i].defineHistogram('OFF_num',title='Number of OFF Clusters; Num Clusters; Entries', path=path_names[i]+'/OFF_Clusters',xbins=101,xmin=-10.0,xmax=2010.0) TopoCaloClustersMonGroup[i].defineHistogram('OFF_eta,OFF_phi',title='Number of OFF Clusters; #eta; #phi; ', type='TH2F', path=path_names[i]+'/OFF_Clusters',xbins=50,xmin=-5.0,xmax=5.0,ybins=64,ymin=-math.pi,ymax=math.pi) TopoCaloClustersMonGroup[i].defineHistogram('OFF_et',title='OFF Clusters E_{T}; E_{T} [GeV]; Entries', path=path_names[i]+'/OFF_Clusters',xbins=100,xmin=0.0,xmax=100.0) TopoCaloClustersMonGroup[i].defineHistogram('OFF_eta',title='OFF Clusters #eta; #eta; Entries', path=path_names[i]+'/OFF_Clusters',xbins=50,xmin=-5.0,xmax=5.0) TopoCaloClustersMonGroup[i].defineHistogram('OFF_phi',title='OFF Cluster #phi; #phi; Entries', path=path_names[i]+'/OFF_Clusters',xbins=64,xmin=-math.pi,xmax=math.pi) TopoCaloClustersMonGroup[i].defineHistogram('OFF_time',title='OFF Cluster time; time; Entries', path=path_names[i]+'/OFF_Clusters',xbins=75,xmin=-25.0,xmax=25.0) TopoCaloClustersMonGroup[i].defineHistogram('OFF_et,OFF_time',title='Number of OFF Clusters; E_{T} [GeV]; Time', type='TProfile', path=path_names[i]+'/OFF_Clusters',xbins=50,xmin=0.0,xmax=100.0) TopoCaloClustersMonGroup[i].defineHistogram('OFF_type',title='HLT Cluster Type; Size Enum; Entries', path=path_names[i]+'/OFF_Clusters',xbins=16,xmin=0.5,xmax=16.5) TopoCaloClustersMonGroup[i].defineHistogram('HLT_bc,OFF_et;OFF_et_vs_BC',title='OFF Clusters E_{T} vs BC; BCs from front of bunch train; <E_{T}> [GeV]', type='TProfile', path=path_names[i]+'/OFF_Clusters',xbins=21,xmin=-0.5,xmax=20.5) ######################## # HLT matched to OFF # ######################## # Declare HLT matched HLT vs. OFF cluster histograms TopoCaloClustersMonGroup[i].defineHistogram('HLT_matched_fraction',title='Fraction of HLT clusters matched to OFF clusters; Matched fraction; Entries', path=path_names[i]+'/HLT_Matched_to_OFF',xbins=100,xmin=0.0,xmax=1.0) TopoCaloClustersMonGroup[i].defineHistogram('HLT_vs_OFF_minimum_delta_r',title='HLT vs OFF Cluster #DeltaR; #DeltaR; Entries', path=path_names[i]+'/HLT_Matched_to_OFF',xbins=50,xmin=0.0,xmax=0.1) TopoCaloClustersMonGroup[i].defineHistogram('HLT_vs_OFF_delta_eta',cutmask='HLT_with_OFF_match',title='HLT vs OFF Cluster #Delta#eta; #eta_{_{OFF}} - #eta_{_{HLT}}; Entries', path=path_names[i]+'/HLT_Matched_to_OFF',xbins=50,xmin=-0.2,xmax=0.2) TopoCaloClustersMonGroup[i].defineHistogram('HLT_vs_OFF_delta_phi',cutmask='HLT_with_OFF_match',title='HLT vs OFF Cluster #Delta#phi; #phi_{_{OFF}} - #phi_{_{HLT}}; Entries', path=path_names[i]+'/HLT_Matched_to_OFF',xbins=50,xmin=0.0,xmax=0.02) TopoCaloClustersMonGroup[i].defineHistogram('HLT_vs_OFF_delta_time',cutmask='HLT_with_OFF_match',title='HLT vs OFF Cluster time; Time; Entries', path=path_names[i]+'/HLT_Matched_to_OFF',xbins=80,xmin=-20.0,xmax=20.0) TopoCaloClustersMonGroup[i].defineHistogram('HLT_et,OFF_match_et;OFF_match_et_vs_HLT_with_OFF_match_et',cutmask='HLT_with_OFF_match',title='HLT vs OFF Cluster E_{T}; E_{T_{OFF}} [GeV]; E_{T_{HLT}} [GeV]', type='TH2F', path=path_names[i]+'/HLT_Matched_to_OFF',xbins=100,xmin=0.0,xmax=100.0, ybins=100,ymin=0.0,ymax=100.0) TopoCaloClustersMonGroup[i].defineHistogram('HLT_vs_OFF_resolution',cutmask='HLT_with_OFF_match',title='HLT vs OFF Cluster #DeltaE_{T} / E_{T}; E_{T_{OFF}} - E_{T_{HLT}} / E_{T_{OFF}} [%]; Entries', path=path_names[i]+'/HLT_Matched_to_OFF',xbins=100,xmin=-60.0,xmax=100.0) TopoCaloClustersMonGroup[i].defineHistogram('HLT_et,HLT_vs_OFF_resolution;HLT_vs_OFF_resolution_vs_HLT_with_OFF_match_et',cutmask='HLT_with_OFF_match',title='HLT vs OFF Cluster < #DeltaE_{T} / E_{T} >; E_{T,HLT} [GeV]; < E_{T_{OFF}} - E_{T_{HLT}} / E_{T_{OFF}} >', type='TProfile', path=path_names[i]+'/HLT_Matched_to_OFF',xbins=100,xmin=0.0,xmax=100.0) TopoCaloClustersMonGroup[i].defineHistogram('HLT_eta,HLT_vs_OFF_resolution;HLT_vs_OFF_resolution_vs_HLT_with_OFF_match_eta',cutmask='HLT_with_OFF_match',title='HLT vs OFF Cluster < #DeltaE_{T} / E_{T} >; #eta_{_{ OFF}}; < E_{T_{OFF}} - E_{T_{HLT}} / E_{T_{OFF}} >', type='TProfile', path=path_names[i]+'/HLT_Matched_to_OFF',xbins=20,xmin=-5.0,xmax=5.0) TopoCaloClustersMonGroup[i].defineHistogram('HLT_phi,HLT_vs_OFF_resolution;HLT_vs_OFF_resolution_vs_HLT_with_OFF_match_phi',cutmask='HLT_with_OFF_match',title='HLT vs OFF Cluster < #DeltaE_{T} / E_{T} >; #phi_{_{ OFF}}; < E_{T_{OFF}} - E_{T_{HLT}} / E_{T_{OFF}} >', type='TProfile', path=path_names[i]+'/HLT_Matched_to_OFF',xbins=16,xmin=-math.pi,xmax=math.pi) TopoCaloClustersMonGroup[i].defineHistogram('HLT_eta,HLT_phi,HLT_vs_OFF_resolution;HLT_vs_OFF_resolution_vs_HLT_with_OFF_match_phi_vs_HLT_with_OFF_match_eta',cutmask='HLT_with_OFF_match',title='HLT vs OFF Cluster < #DeltaE_{T} / E_{T} >; #eta; #phi', type='TProfile2D', path=path_names[i]+'/HLT_Matched_to_OFF',xbins=50,xmin=-5.0,xmax=5.0,ybins=64,ymin=-math.pi,ymax=math.pi) # Declare HLT histograms with OFF matches TopoCaloClustersMonGroup[i].defineHistogram('HLT_with_OFF_match_num',title='Number of HLT Clusters (With OFF Matches); Num Clusters; Entries', path=path_names[i]+'/HLT_Matched_to_OFF',xbins=101,xmin=-10.0,xmax=2010.0) TopoCaloClustersMonGroup[i].defineHistogram('HLT_eta,HLT_phi;HLT_with_OFF_match_phi_vs_HLT_with_OFF_match_eta',cutmask='HLT_with_OFF_match',title='Number of HLT Clusters (With OFF Matches); #eta; #phi; ', type='TH2F', path=path_names[i]+'/HLT_Matched_to_OFF',xbins=50,xmin=-5.0,xmax=5.0,ybins=64,ymin=-math.pi,ymax=math.pi) TopoCaloClustersMonGroup[i].defineHistogram('HLT_et;HLT_with_OFF_match_et',cutmask='HLT_with_OFF_match',title='HLT Clusters E_{T} (With OFF Matches); E_{T} [GeV]; Entries', path=path_names[i]+'/HLT_Matched_to_OFF',xbins=100,xmin=0.0,xmax=100.0) TopoCaloClustersMonGroup[i].defineHistogram('HLT_eta;HLT_with_OFF_match_eta',cutmask='HLT_with_OFF_match',title='HLT Clusters #eta (With OFF Matches); #eta; Entries', path=path_names[i]+'/HLT_Matched_to_OFF',xbins=50,xmin=-5.0,xmax=5.0) TopoCaloClustersMonGroup[i].defineHistogram('HLT_phi;HLT_with_OFF_match_phi',cutmask='HLT_with_OFF_match',title='HLT Cluster #phi (With OFF Matches); #phi; Entries', path=path_names[i]+'/HLT_Matched_to_OFF',xbins=64,xmin=-math.pi,xmax=math.pi) TopoCaloClustersMonGroup[i].defineHistogram('HLT_time;HLT_with_OFF_match_time',cutmask='HLT_with_OFF_match',title='HLT Cluster time (With OFF Matches); time; Entries', path=path_names[i]+'/HLT_Matched_to_OFF',xbins=75,xmin=-25.0,xmax=25.0) TopoCaloClustersMonGroup[i].defineHistogram('HLT_et,HLT_time;HLT_with_OFF_match_time_vs_HLT_with_OFF_match_et',cutmask='HLT_with_OFF_match',title='Number of HLT Clusters (With OFF Matches); E_{T} [GeV]; Time', type='TProfile', path=path_names[i]+'/HLT_Matched_to_OFF',xbins=50,xmin=0.0,xmax=100.0) TopoCaloClustersMonGroup[i].defineHistogram('HLT_type;HLT_with_OFF_match_type',cutmask='HLT_with_OFF_match',title='HLT Cluster Type (With OFF Matches); Size Enum; Entries', path=path_names[i]+'/HLT_Matched_to_OFF',xbins=16,xmin=0.5,xmax=16.5) TopoCaloClustersMonGroup[i].defineHistogram('HLT_bc,HLT_et;HLT_with_OFF_match_et_vs_BC',cutmask='HLT_with_OFF_match',title='HLT Clusters E_{T} (With OFF Matches) vs BC; BCs from front of bunch train; <E_{T}> [GeV]', type='TProfile', path=path_names[i]+'/HLT_Matched_to_OFF',xbins=21,xmin=-0.5,xmax=20.5) # Declare HLT histograms without OFF matches TopoCaloClustersMonGroup[i].defineHistogram('HLT_no_OFF_match_num',title='Number of HLT Clusters (No OFF Matches); Num Clusters; Entries', path=path_names[i]+'/HLT_Matched_to_OFF',xbins=101,xmin=-10.0,xmax=2010.0) TopoCaloClustersMonGroup[i].defineHistogram('HLT_eta,HLT_phi;HLT_no_OFF_match_phi_vs_HLT_no_OFF_match_eta',cutmask='HLT_no_OFF_match',title='Number of HLT Clusters (No OFF Matches); #eta; #phi; ', type='TH2F', path=path_names[i]+'/HLT_Matched_to_OFF',xbins=50,xmin=-5.0,xmax=5.0,ybins=64,ymin=-math.pi,ymax=math.pi) TopoCaloClustersMonGroup[i].defineHistogram('HLT_et;HLT_no_OFF_match_et',cutmask='HLT_no_OFF_match',title='HLT Clusters E_{T} (No OFF Matches); E_{T} [GeV]; Entries', path=path_names[i]+'/HLT_Matched_to_OFF',xbins=100,xmin=0.0,xmax=100.0) TopoCaloClustersMonGroup[i].defineHistogram('HLT_eta;HLT_no_OFF_match_eta',cutmask='HLT_no_OFF_match',title='HLT Clusters #eta (No OFF Matches); #eta; Entries', path=path_names[i]+'/HLT_Matched_to_OFF',xbins=50,xmin=-5.0,xmax=5.0) TopoCaloClustersMonGroup[i].defineHistogram('HLT_phi;HLT_no_OFF_match_phi',cutmask='HLT_no_OFF_match',title='HLT Cluster #phi (No OFF Matches); #phi; Entries', path=path_names[i]+'/HLT_Matched_to_OFF',xbins=64,xmin=-math.pi,xmax=math.pi) TopoCaloClustersMonGroup[i].defineHistogram('HLT_time;HLT_no_OFF_match_time',cutmask='HLT_no_OFF_match',title='HLT Cluster time (No OFF Matches); time; Entries', path=path_names[i]+'/HLT_Matched_to_OFF',xbins=75,xmin=-25.0,xmax=25.0) TopoCaloClustersMonGroup[i].defineHistogram('HLT_et,HLT_time;HLT_no_OFF_match_time_vs_HLT_no_OFF_match_et',cutmask='HLT_no_OFF_match',title='Number of HLT Clusters (No OFF Matches); E_{T} [GeV]; Time', type='TProfile', path=path_names[i]+'/HLT_Matched_to_OFF',xbins=50,xmin=0.0,xmax=100.0) TopoCaloClustersMonGroup[i].defineHistogram('HLT_type;HLT_no_OFF_match_type',cutmask='HLT_no_OFF_match',title='HLT Cluster Type (No OFF Matches); Size Enum; Entries', path=path_names[i]+'/HLT_Matched_to_OFF',xbins=16,xmin=0.5,xmax=16.5) TopoCaloClustersMonGroup[i].defineHistogram('HLT_bc,HLT_et;HLT_no_OFF_match_et_vs_BC',cutmask='HLT_no_OFF_match',title='HLT Clusters E_{T} (No OFF Matches) vs BC; BCs from front of bunch train; <E_{T}> [GeV]', type='TProfile', path=path_names[i]+'/HLT_Matched_to_OFF',xbins=21,xmin=-0.5,xmax=20.5) ######################## # OFF matched to HLT # ######################## # Declare OFF matched HLT vs. OFF cluster histograms TopoCaloClustersMonGroup[i].defineHistogram('OFF_matched_fraction',title='Fraction of OFF clusters matched to HLT clusters; Matched fraction; Entries', path=path_names[i]+'/OFF_Matched_to_HLT',xbins=100,xmin=0.0,xmax=1.0) TopoCaloClustersMonGroup[i].defineHistogram('OFF_vs_HLT_minimum_delta_r',title='HLT vs OFF Cluster #DeltaR; #DeltaR; Entries', path=path_names[i]+'/OFF_Matched_to_HLT',xbins=50,xmin=0.0,xmax=0.1) TopoCaloClustersMonGroup[i].defineHistogram('OFF_vs_HLT_delta_eta',cutmask='OFF_with_HLT_match',title='HLT vs OFF Cluster #Delta#eta; #eta_{_{OFF}} - #eta_{_{HLT}}; Entries', path=path_names[i]+'/OFF_Matched_to_HLT',xbins=50,xmin=-0.2,xmax=0.2) TopoCaloClustersMonGroup[i].defineHistogram('OFF_vs_HLT_delta_phi',cutmask='OFF_with_HLT_match',title='HLT vs OFF Cluster #Delta#phi; #phi_{_{OFF}} - #phi_{_{HLT}}; Entries', path=path_names[i]+'/OFF_Matched_to_HLT',xbins=50,xmin=0.0,xmax=0.02) TopoCaloClustersMonGroup[i].defineHistogram('OFF_vs_HLT_delta_time',cutmask='OFF_with_HLT_match',title='HLT vs OFF Cluster time; Time; Entries', path=path_names[i]+'/OFF_Matched_to_HLT',xbins=80,xmin=-20.0,xmax=20.0) TopoCaloClustersMonGroup[i].defineHistogram('OFF_et,HLT_match_et;HLT_match_et_vs_OFF_with_HLT_match_et',cutmask='OFF_with_HLT_match',title='HLT vs OFF Cluster E_{T}; E_{T_{OFF}} [GeV]; E_{T_{HLT}} [GeV]', type='TH2F', path=path_names[i]+'/OFF_Matched_to_HLT',xbins=100,xmin=0.0,xmax=100.0, ybins=100,ymin=0.0,ymax=100.0) TopoCaloClustersMonGroup[i].defineHistogram('OFF_vs_HLT_resolution',cutmask='OFF_with_HLT_match',title='HLT vs OFF Cluster #DeltaE_{T} / E_{T}; E_{T_{OFF}} - E_{T_{HLT}} / E_{T_{OFF}} [%]; Entries', path=path_names[i]+'/OFF_Matched_to_HLT',xbins=100,xmin=-60.0,xmax=100.0) TopoCaloClustersMonGroup[i].defineHistogram('OFF_et,OFF_vs_HLT_resolution;OFF_vs_HLT_resolution_vs_OFF_with_HLT_match_et',cutmask='OFF_with_HLT_match',title='HLT vs OFF Cluster < #DeltaE_{T} / E_{T} >; E_{T,OFF} [GeV]; < E_{T_{OFF}} - E_{T_{HLT}} / E_{T_{OFF}} >', type='TProfile', path=path_names[i]+'/OFF_Matched_to_HLT',xbins=100,xmin=0.0,xmax=100.0) TopoCaloClustersMonGroup[i].defineHistogram('OFF_eta,OFF_vs_HLT_resolution;OFF_vs_HLT_resolution_vs_OFF_with_HLT_match_eta',cutmask='OFF_with_HLT_match',title='HLT vs OFF Cluster < #DeltaE_{T} / E_{T} >; #eta_{_{ OFF}}; < E_{T_{OFF}} - E_{T_{HLT}} / E_{T_{OFF}} >', type='TProfile', path=path_names[i]+'/OFF_Matched_to_HLT',xbins=20,xmin=-5.0,xmax=5.0) TopoCaloClustersMonGroup[i].defineHistogram('OFF_phi,OFF_vs_HLT_resolution;OFF_vs_HLT_resolution_vs_OFF_with_HLT_match_phi',cutmask='OFF_with_HLT_match',title='HLT vs OFF Cluster < #DeltaE_{T} / E_{T} >; #phi_{_{ OFF}}; < E_{T_{OFF}} - E_{T_{HLT}} / E_{T_{OFF}} >', type='TProfile', path=path_names[i]+'/OFF_Matched_to_HLT',xbins=16,xmin=-math.pi,xmax=math.pi) TopoCaloClustersMonGroup[i].defineHistogram('OFF_eta,OFF_phi,OFF_vs_HLT_resolution;OFF_vs_HLT_resolution_vs_OFF_with_HLT_match_phi_vs_OFF_with_HLT_match_eta',cutmask='OFF_with_HLT_match',title='HLT vs OFF Cluster < #DeltaE_{T} / E_{T} >; #eta; #phi', type='TProfile2D', path=path_names[i]+'/OFF_Matched_to_HLT',xbins=50,xmin=-5.0,xmax=5.0,ybins=64,ymin=-math.pi,ymax=math.pi) # Declare OFF histograms with HLT matches TopoCaloClustersMonGroup[i].defineHistogram('OFF_with_HLT_match_num',title='Number of OFF Clusters (With HLT Matches); Num Clusters; Entries', path=path_names[i]+'/OFF_Matched_to_HLT',xbins=101,xmin=-10.0,xmax=2010.0) TopoCaloClustersMonGroup[i].defineHistogram('OFF_eta,OFF_phi;OFF_with_HLT_match_phi_vs_OFF_with_HLT_match_eta',cutmask='OFF_with_HLT_match',title='Number of OFF Clusters (With HLT Matches); #eta; #phi; ', type='TH2F', path=path_names[i]+'/OFF_Matched_to_HLT',xbins=50,xmin=-5.0,xmax=5.0,ybins=64,ymin=-math.pi,ymax=math.pi) TopoCaloClustersMonGroup[i].defineHistogram('OFF_et;OFF_with_HLT_match_et',cutmask='OFF_with_HLT_match',title='OFF Clusters E_{T} (With HLT Matches); E_{T} [GeV]; Entries', path=path_names[i]+'/OFF_Matched_to_HLT',xbins=100,xmin=0.0,xmax=100.0) TopoCaloClustersMonGroup[i].defineHistogram('OFF_eta;OFF_with_HLT_match_eta',cutmask='OFF_with_HLT_match',title='OFF Clusters #eta (With HLT Matches); #eta; Entries', path=path_names[i]+'/OFF_Matched_to_HLT',xbins=50,xmin=-5.0,xmax=5.0) TopoCaloClustersMonGroup[i].defineHistogram('OFF_phi;OFF_with_HLT_match_phi',cutmask='OFF_with_HLT_match',title='OFF Cluster #phi (With HLT Matches); #phi; Entries', path=path_names[i]+'/OFF_Matched_to_HLT',xbins=64,xmin=-math.pi,xmax=math.pi) TopoCaloClustersMonGroup[i].defineHistogram('OFF_time;OFF_with_HLT_match_time',cutmask='OFF_with_HLT_match',title='OFF Cluster time (With HLT Matches); time; Entries', path=path_names[i]+'/OFF_Matched_to_HLT',xbins=75,xmin=-25.0,xmax=25.0) TopoCaloClustersMonGroup[i].defineHistogram('OFF_et,OFF_time;OFF_with_HLT_match_time_vs_OFF_with_HLT_match_et',cutmask='OFF_with_HLT_match',title='Number of OFF Clusters (With HLT Matches); E_{T} [GeV]; Time', type='TProfile', path=path_names[i]+'/OFF_Matched_to_HLT',xbins=50,xmin=0.0,xmax=100.0) TopoCaloClustersMonGroup[i].defineHistogram('OFF_type;OFF_with_HLT_match_type',cutmask='OFF_with_HLT_match',title='OFF Cluster Type (With HLT Matches); Size Enum; Entries', path=path_names[i]+'/OFF_Matched_to_HLT',xbins=16,xmin=0.5,xmax=16.5) TopoCaloClustersMonGroup[i].defineHistogram('HLT_bc,OFF_et;OFF_with_HLT_match_et_vs_BC',cutmask='OFF_with_HLT_match',title='OFF Clusters E_{T} (With HLT Matches) vs BC; BCs from front of bunch train; <E_{T}> [GeV]', type='TProfile', path=path_names[i]+'/OFF_Matched_to_HLT',xbins=21,xmin=-0.5,xmax=20.5) # Declare OFF histograms without HLT matches TopoCaloClustersMonGroup[i].defineHistogram('OFF_no_HLT_match_num',title='Number of OFF Clusters (No HLT Matches); Num Clusters; Entries', path=path_names[i]+'/OFF_Matched_to_HLT',xbins=101,xmin=-10.0,xmax=2010.0) TopoCaloClustersMonGroup[i].defineHistogram('OFF_eta,OFF_phi;OFF_no_HLT_match_phi_vs_OFF_no_HLT_match_eta',cutmask='OFF_no_HLT_match',title='Number of OFF Clusters (No HLT Matches); #eta; #phi; ', type='TH2F', path=path_names[i]+'/OFF_Matched_to_HLT',xbins=50,xmin=-5.0,xmax=5.0,ybins=64,ymin=-math.pi,ymax=math.pi) TopoCaloClustersMonGroup[i].defineHistogram('OFF_et;OFF_no_HLT_match_et',cutmask='OFF_no_HLT_match',title='OFF Clusters E_{T} (No HLT Matches); E_{T} [GeV]; Entries', path=path_names[i]+'/OFF_Matched_to_HLT',xbins=100,xmin=0.0,xmax=100.0) TopoCaloClustersMonGroup[i].defineHistogram('OFF_eta;OFF_no_HLT_match_eta',cutmask='OFF_no_HLT_match',title='OFF Clusters #eta (No HLT Matches); #eta; Entries', path=path_names[i]+'/OFF_Matched_to_HLT',xbins=50,xmin=-5.0,xmax=5.0) TopoCaloClustersMonGroup[i].defineHistogram('OFF_phi;OFF_no_HLT_match_phi',cutmask='OFF_no_HLT_match',title='OFF Cluster #phi (No HLT Matches); #phi; Entries', path=path_names[i]+'/OFF_Matched_to_HLT',xbins=64,xmin=-math.pi,xmax=math.pi) TopoCaloClustersMonGroup[i].defineHistogram('OFF_time;OFF_no_HLT_match_time',cutmask='OFF_no_HLT_match',title='OFF Cluster time (No HLT Matches); time; Entries', path=path_names[i]+'/OFF_Matched_to_HLT',xbins=75,xmin=-25.0,xmax=25.0) TopoCaloClustersMonGroup[i].defineHistogram('OFF_et,OFF_time;OFF_no_HLT_match_time_vs_OFF_no_HLT_match_et',cutmask='OFF_no_HLT_match',title='Number of OFF Clusters (No HLT Matches); E_{T} [GeV]; Time', type='TProfile', path=path_names[i]+'/OFF_Matched_to_HLT',xbins=50,xmin=0.0,xmax=100.0) TopoCaloClustersMonGroup[i].defineHistogram('OFF_type;OFF_no_HLT_match_type',cutmask='OFF_no_HLT_match',title='OFF Cluster Type (No HLT Matches); Size Enum; Entries', path=path_names[i]+'/OFF_Matched_to_HLT',xbins=16,xmin=0.5,xmax=16.5) TopoCaloClustersMonGroup[i].defineHistogram('HLT_bc,OFF_et;OFF_no_HLT_match_et_vs_BC',cutmask='OFF_no_HLT_match',title='OFF Clusters E_{T} (No HLT Matches) vs BC; BCs from front of bunch train; <E_{T}> [GeV]', type='TProfile', path=path_names[i]+'/OFF_Matched_to_HLT',xbins=21,xmin=-0.5,xmax=20.5) result.merge(helper.result()) return result
def TrigMinBias(configFlags): from AthenaMonitoring import AthMonitorCfgHelper monConfig = AthMonitorCfgHelper(configFlags, 'HLTMinBiasMonAlgMTAcc') from AthenaConfiguration.ComponentFactory import CompFactory alg = monConfig.addAlgorithm(CompFactory.HLTMinBiasMonAlgMT, 'HLTMinBiasMonAlgMT') mbEffAllGroup = monConfig.addGroup(alg, 'EffAll', 'HLT/MinBiasMon/') length = len(alg.triggerList) mbEffAllGroup.defineHistogram("PurityPassed,whichTrigger", type='TEfficiency', title="PurityPassed;whichTrigger", xbins=length, xmin=0, xmax=length, xlabels=list(alg.triggerList)) mbEffAllGroup.defineHistogram("whichTrigger", title="count of triggers;HLT", xbins=length, xmin=0, xmax=length, xlabels=list(alg.triggerList)) mbEffAllGroup.defineHistogram("whichTrigger;No. of events", type='TH1I', title='Event per Trigger;HLT', xbins=length, xmin=0, xmax=length, xlabels=list(alg.triggerList)) mbEffAllGroup.defineHistogram( "decision,whichTrigger", type='TEfficiency', title='Efficiency of selecting Events with One Good Trk;TriggerName', xbins=length, xmin=0, xmax=length, xlabels=list(alg.triggerList)) for chain in alg.triggerList: mbGroup = monConfig.addGroup(alg, chain, 'HLT/MinBiasMon/IDMinbias/' + chain + '/') mbEffGroup = monConfig.addGroup( alg, chain + '_Eff', 'HLT/MinBiasMon/Purities&Efficiencies/' + chain + '/') # correct the titles of following histograms mbGroup.defineHistogram( "PixelSPLow", title= "Number of SP in whole Pixels detector for all events in low range", xbins=100, xmin=0, xmax=100) mbGroup.defineHistogram( "PixelSPHigh", title= "Number of SP in whole Pixels detector for all events in high range", xbins=100, xmin=0, xmax=30000) mbGroup.defineHistogram("PixBarr_SP", title="Number of SP for all events in Barrel", xbins=100, xmin=0, xmax=30000) mbGroup.defineHistogram("PixECA_SP", title="Number of SP for all events in ECA", xbins=100, xmin=0, xmax=30000) mbGroup.defineHistogram("PixECC_SP", title="Number of SP for all events in ECC", xbins=100, xmin=0, xmax=30000) mbGroup.defineHistogram( "SctTot", title="Number of SP in whole SCT detector for all events", xbins=100, xmin=0, xmax=120000) mbGroup.defineHistogram( "SctBarr_SP", title="Number of SCT_SP for all events in Barrel", xbins=100, xmin=0, xmax=50000) mbGroup.defineHistogram("SctECA_SP", title="Number of SCT_SP for all events in ECA", xbins=100, xmin=0, xmax=50000) mbGroup.defineHistogram("SctECC_SP", title="Number of SCT_SP for all events in ECC", xbins=100, xmin=0, xmax=50000) mbGroup.defineHistogram( "nTrk", title="Number of offline reconstructed Trk for all events", xbins=100, xmin=0, xmax=30000) mbGroup.defineHistogram( "xaodnTrk", title="Number of offline reconstructed xaod Trk for all events", xbins=100, xmin=0, xmax=30000) mbGroup.defineHistogram("nTrk,xaodnTrk", type='TH2F', title="nTrk;xaodnTrk", xbins=100, xmin=0, xmax=2000, ybins=100, ymin=0, ymax=2000) mbGroup.defineHistogram("SctECA_SP,SctECC_SP", type='TH2F', title="SctECA_SP;SctECC_SP", xbins=100, xmin=0, xmax=30000, ybins=100, ymin=0, ymax=30000) mbGroup.defineHistogram("PixECA_SP,PixECC_SP", type='TH2F', title="PixECA_SP;PixECC_SP", xbins=100, xmin=0, xmax=30000, ybins=100, ymin=0, ymax=30000) mbGroup.defineHistogram("SctBarr_SP,PixBarr_SP", type='TH2F', title="SctBarr_SP;PixBarr_SP", xbins=100, xmin=0, xmax=120000, ybins=100, ymin=0, ymax=30000) mbEffGroup.defineHistogram("NumGoodOnlineTracks", title="NumGoodOnlineTracks", xbins=100, xmin=0, xmax=2000) mbEffGroup.defineHistogram("NumGoodOfflineTracks", title="NumGoodOfflineTracks", xbins=100, xmin=0, xmax=2000) mbEffGroup.defineHistogram( "NumGoodOnlineTracks,NumGoodOfflineTracks", type='TH2F', title="NumGoodOnlineTracks;NumGoodOfflineTracks", xbins=100, xmin=0, xmax=2000, ybins=100, ymin=0, ymax=2000) mbEffGroup.defineHistogram("decision,NumGoodOfflineTracks", type='TEfficiency', title='Efficiency;Offline Good nTrk', xbins=1000, xmin=0, xmax=1000) mbEffGroup.defineHistogram("decision,nTrk", type='TEfficiency', title="Efficiency;nTrk", xbins=1000, xmin=0, xmax=1000) return monConfig.result()
def TileMuIdMonitoringConfig(flags, **kwargs): ''' Function to configure TileMuIdMonitorAlgorithm algorithm in the monitoring system.''' # Define one top-level monitoring algorithm. The new configuration # framework uses a component accumulator. from AthenaConfiguration.ComponentAccumulator import ComponentAccumulator result = ComponentAccumulator() # The following class will make a sequence, configure algorithms, and link # them to GenericMonitoringTools from AthenaMonitoring import AthMonitorCfgHelper helper = AthMonitorCfgHelper(flags, 'TileMuIdMonitoring') # Adding an TileCellMonitorAlgorithm algorithm to the helper from AthenaConfiguration.ComponentFactory import CompFactory tileMuIdMonAlg = helper.addAlgorithm(CompFactory.TileMuIdMonitorAlgorithm, 'TileMuIdMonAlg') tileMuIdMonAlg.TriggerChain = '' # L1Trigger Type Bits: # bit0_RNDM, bit1_ZeroBias, bit2_L1Cal, bit3_Muon, # bit4_RPC, bit5_FTK, bit6_CTP, bit7_Calib, AnyPhysTrig kwargs.setdefault('fillHistogramsForL1Triggers', ['AnyPhysTrig', 'bit7_Calib']) l1Triggers = kwargs['fillHistogramsForL1Triggers'] for k, v in kwargs.items(): setattr(tileMuIdMonAlg, k, v) run = str(flags.Input.RunNumber[0]) # 1) Configure histogram with TileMuIdMonAlg algorithm execution time executeTimeGroup = helper.addGroup(tileMuIdMonAlg, 'TileMuIdMonExecuteTime', 'Tile/') executeTimeGroup.defineHistogram( 'TIME_execute', path='MuId', type='TH1F', title='Time for execute TileMuIdMonAlg algorithm;time [#mus]', xbins=100, xmin=0, xmax=1000) from TileCalibBlobObjs.Classes import TileCalibUtils as Tile from TileMonitoring.TileMonitoringCfgHelper import addTileEtaPhiMapsArray # 2) Configure histograms with most energetic Tile MuId muon position addTileEtaPhiMapsArray(helper, tileMuIdMonAlg, name='TileMuIdEtaPhi', type='TH2D', title='Tile MuId muon position', path='Tile/MuId', run=run, triggers=l1Triggers, perSample=False) # 3) Configure histograms with most energetic Tile MuId muon position when Tags=1 addTileEtaPhiMapsArray(helper, tileMuIdMonAlg, name='TileMuId1TagEtaPhi', type='TH2D', title='Tile MuId Tags=1 muon position', path='Tile/MuId', run=run, triggers=l1Triggers, perSample=False) # 4) Configure histograms with most energetic Tile MuId muon position when Tags=2 addTileEtaPhiMapsArray(helper, tileMuIdMonAlg, name='TileMuId2TagEtaPhi', type='TH2D', title='Tile MuId Tags=2 muon position', path='Tile/MuId', run=run, triggers=l1Triggers, perSample=False) from TileMonitoring.TileMonitoringCfgHelper import addTile2DHistogramsArray # 5) Configure histograms with Tile MuId muon quality vs energy addTile2DHistogramsArray( helper, tileMuIdMonAlg, name='TileMuIdEneQuality', xvalue='energy', yvalue='quality', type='TH2D', title='Tile MuId muon quality vs energy [MeV];Energy [MeV];Quality', path='Tile/MuId', xbins=50, xmin=0., xmax=10000., ybins=4, ymin=-0.5, ymax=1.5, run=run, triggers=l1Triggers) # 6) Configure histograms with Tile MuId muon quality vs energy when Tags=1 addTile2DHistogramsArray( helper, tileMuIdMonAlg, name='TileMuId1TagEneQuality', xvalue='energy', yvalue='quality', type='TH2D', title= 'Tile MuId Tags=1 muon quality vs energy [MeV];Energy [MeV];Quality', path='Tile/MuId', xbins=50, xmin=0., xmax=10000., ybins=4, ymin=-0.5, ymax=1.5, run=run, triggers=l1Triggers) # 7) Configure histograms with Tile MuId muon quality vs energy when Tags=2 addTile2DHistogramsArray( helper, tileMuIdMonAlg, name='TileMuId2TagEneQuality', xvalue='energy', yvalue='quality', type='TH2D', title= 'Tile MuId Tags=2 muon quality vs energy [MeV];Energy [MeV];Quality', path='Tile/MuId', xbins=50, xmin=0., xmax=10000., ybins=4, ymin=-0.5, ymax=1.5, run=run, triggers=l1Triggers) from TileMonitoring.TileMonitoringCfgHelper import addTile1DHistogramsArray # 8) Configure histograms with Tile MuId number of tags addTile1DHistogramsArray(helper, tileMuIdMonAlg, name='TileMuIdTags', xvalue='nTags', title='Tile MuId number of tags', path='Tile/MuId', xbins=5, xmin=-0.5, xmax=4.5, type='TH1D', run=run, triggers=l1Triggers, perPartition=False, perSample=False, perGain=False, subDirectory=False, allPartitions=False) # 9) Configure histograms with all Tile MuId energy addTile1DHistogramsArray(helper, tileMuIdMonAlg, name='TileMuIdEnergy', xvalue='energy', title='Tile MuId Energy [MeV]', path='Tile/MuId', xbins=100, xmin=0., xmax=10000., type='TH1D', run=run, triggers=l1Triggers, perPartition=False, perSample=False, perGain=False, subDirectory=False, allPartitions=False) # 10) Configure histograms with all Tile MuId muon quality addTile1DHistogramsArray(helper, tileMuIdMonAlg, name='TileMuIdQuality', xvalue='quality', title='Tile MuId muon quality', path='Tile/MuId', xbins=4, xmin=-0.5, xmax=1.5, type='TH1D', run=run, triggers=l1Triggers, perPartition=False, perSample=False, perGain=False, subDirectory=False, allPartitions=False) # 11) Configure histograms with all Tile MuId muon eta position addTile1DHistogramsArray(helper, tileMuIdMonAlg, name='TileMuIdEta', xvalue='eta', title='Tile MuId muon #eta position;#eta', path='Tile/MuId', xbins=40, xmin=-2., xmax=2., type='TH1D', run=run, triggers=l1Triggers, perPartition=False, perSample=False, perGain=False, subDirectory=False, allPartitions=False) # 12) Configure histograms with all Tile MuId muon phi position addTile1DHistogramsArray(helper, tileMuIdMonAlg, name='TileMuIdPhi', xvalue='phi', title='Tile MuId muon #phi position;#phi', path='Tile/MuId', xbins=Tile.MAX_DRAWER, xmin=-3.15, xmax=3.15, type='TH1D', run=run, triggers=l1Triggers, perPartition=False, perSample=False, perGain=False, subDirectory=False, allPartitions=False) # 13) Configure histograms with all Tile MuId muon average energy vs eta addTile1DHistogramsArray(helper, tileMuIdMonAlg, name='TileMuIdEneEta', xvalue='eta', value='energy', title='Tile MuId muon average energy;#eta', path='Tile/MuId', xbins=40, xmin=-2., xmax=2., type='TProfile', run=run, triggers=l1Triggers, perPartition=False, perSample=False, perGain=False, subDirectory=False, allPartitions=False) # 14) Configure histograms with all Tile MuId muon average energy vs phi addTile1DHistogramsArray(helper, tileMuIdMonAlg, name='TileMuIdEnePhi', xvalue='phi', value='energy', title='Tile MuId muon everage energy;#phi', path='Tile/MuId', xbins=Tile.MAX_DRAWER, xmin=-3.15, xmax=3.15, type='TProfile', run=run, triggers=l1Triggers, perPartition=False, perSample=False, perGain=False, subDirectory=False, allPartitions=False) # 15) Configure histograms with all Tile MuId energy when Tags=1 addTile1DHistogramsArray(helper, tileMuIdMonAlg, name='TileMuId1TagEnergy', xvalue='energy', title='Tile MuId Tags=1 Energy [MeV]', path='Tile/MuId', xbins=100, xmin=0., xmax=10000., type='TH1D', run=run, triggers=l1Triggers, perPartition=False, perSample=False, perGain=False, subDirectory=False, allPartitions=False) # 16) Configure histograms with all Tile MuId muon quality when Tags=1 addTile1DHistogramsArray(helper, tileMuIdMonAlg, name='TileMuId1TagQuality', xvalue='quality', title='Tile MuId Tags=1 muon quality', path='Tile/MuId', xbins=4, xmin=-0.5, xmax=1.5, type='TH1D', run=run, triggers=l1Triggers, perPartition=False, perSample=False, perGain=False, subDirectory=False, allPartitions=False) # 17) Configure histograms with all Tile MuId muon average energy vs eta when Tags=1 addTile1DHistogramsArray(helper, tileMuIdMonAlg, name='TileMuId1TagEneEta', xvalue='eta', value='energy', title='Tile MuId Tags=1 muon average energy;#eta', path='Tile/MuId', xbins=40, xmin=-2., xmax=2., type='TProfile', run=run, triggers=l1Triggers, perPartition=False, perSample=False, perGain=False, subDirectory=False, allPartitions=False) # 18) Configure histograms with all Tile MuId muon average energy vs phi when Tags=1 addTile1DHistogramsArray(helper, tileMuIdMonAlg, name='TileMuId1TagEnePhi', xvalue='phi', value='energy', title='Tile MuId Tags=1 muon everage energy;#phi', path='Tile/MuId', xbins=Tile.MAX_DRAWER, xmin=-3.15, xmax=3.15, type='TProfile', run=run, triggers=l1Triggers, perPartition=False, perSample=False, perGain=False, subDirectory=False, allPartitions=False) # 19) Configure histograms with all Tile MuId energy when Tags=2 addTile1DHistogramsArray(helper, tileMuIdMonAlg, name='TileMuId2TagEnergy', xvalue='energy', title='Tile MuId Tags=2 Energy [MeV]', path='Tile/MuId', xbins=100, xmin=0., xmax=10000., type='TH1D', run=run, triggers=l1Triggers, perPartition=False, perSample=False, perGain=False, subDirectory=False, allPartitions=False) # 20) Configure histograms with all Tile MuId muon quality when Tags=2 addTile1DHistogramsArray(helper, tileMuIdMonAlg, name='TileMuId2TagQuality', xvalue='quality', title='Tile MuId Tags=2 muon quality', path='Tile/MuId', xbins=4, xmin=-0.5, xmax=1.5, type='TH1D', run=run, triggers=l1Triggers, perPartition=False, perSample=False, perGain=False, subDirectory=False, allPartitions=False) # 21) Configure histograms with all Tile MuId muon average energy vs eta when Tags=2 addTile1DHistogramsArray(helper, tileMuIdMonAlg, name='TileMuId2TagEneEta', xvalue='eta', value='energy', title='Tile MuId Tags=2 muon average energy;#eta', path='Tile/MuId', xbins=40, xmin=-2., xmax=2., type='TProfile', run=run, triggers=l1Triggers, perPartition=False, perSample=False, perGain=False, subDirectory=False, allPartitions=False) # 22) Configure histograms with all Tile MuId muon average energy vs phi when Tags=2 addTile1DHistogramsArray(helper, tileMuIdMonAlg, name='TileMuId2TagEnePhi', xvalue='phi', value='energy', title='Tile MuId Tags=2 muon everage energy;#phi', path='Tile/MuId', xbins=Tile.MAX_DRAWER, xmin=-3.15, xmax=3.15, type='TProfile', run=run, triggers=l1Triggers, perPartition=False, perSample=False, perGain=False, subDirectory=False, allPartitions=False) accumalator = helper.result() result.merge(accumalator) return result
def TileMuonFitMonitoringConfig(flags, **kwargs): ''' Function to configure TileMuonFitMonitorAlgorithm algorithm in the monitoring system.''' # Define one top-level monitoring algorithm. The new configuration # framework uses a component accumulator. result = ComponentAccumulator() # The following class will make a sequence, configure algorithms, and link # them to GenericMonitoringTools from AthenaMonitoring import AthMonitorCfgHelper helper = AthMonitorCfgHelper(flags, 'TileMuonFitMonitoring') # Adding an TileMuonFitMonitorAlgorithm algorithm to the helper TileMuonFitMonitorAlgorithm = CompFactory.TileMuonFitMonitorAlgorithm tileMuonFitMonAlg = helper.addAlgorithm(TileMuonFitMonitorAlgorithm, 'TileMuonFitMonAlg') tileMuonFitMonAlg.TriggerChain = '' # L1Trigger Type Bits: # bit0_RNDM, bit1_ZeroBias, bit2_L1Cal, bit3_Muon, # bit4_RPC, bit5_FTK, bit6_CTP, bit7_Calib, AnyPhysTrig kwargs.setdefault('fillHistogramsForL1Triggers', ['AnyPhysTrig', 'bit7_Calib']) l1Triggers = kwargs['fillHistogramsForL1Triggers'] for k, v in kwargs.items(): setattr(tileMuonFitMonAlg, k, v) run = str(flags.Input.RunNumber[0]) # 1) Configure histogram with TileMuonFitMonAlg algorithm execution time executeTimeGroup = helper.addGroup(tileMuonFitMonAlg, 'TileMuonFitMonExecuteTime', 'Tile/') executeTimeGroup.defineHistogram( 'TIME_execute', path='MuonFit', type='TH1F', title='Time for execute TileMuonFitMonAlg algorithm;time [#mus]', xbins=100, xmin=0, xmax=10000) from TileCalibBlobObjs.Classes import TileCalibUtils as Tile from TileMonitoring.TileMonitoringCfgHelper import addTile2DHistogramsArray # 2) Configure histograms with Tile MuonFit position at y=0 addTile2DHistogramsArray( helper, tileMuonFitMonAlg, name='TileMuonFitPosition', xvalue='zPosition', yvalue='xPosition', title='Tile MuonFit position at y=0;z [mm];x [mm]', path='Tile/MuonFit', xbins=69, xmin=-6900, xmax=6900., ybins=44, ymin=-4400., ymax=4400., type='TH2D', run=run, triggers=l1Triggers) # 3) Configure histograms with Tile MuonFit sinus of the angle in the y-z plane vs position addTile2DHistogramsArray( helper, tileMuonFitMonAlg, name='TileMuonFitPosDirectionTheta', xvalue='zPosition', yvalue='theta', path='Tile/MuonFit', title='Tile MuonFit vertical axis component;z [mm];sin(#theta)', xbins=49, xmin=-4900, xmax=4900., ybins=50, ymin=-0., ymax=1., type='TH2D', run=run, triggers=l1Triggers) from TileMonitoring.TileMonitoringCfgHelper import addTile1DHistogramsArray # 4) Configure histograms with number of Tile MuonFits reconstructed addTile1DHistogramsArray(helper, tileMuonFitMonAlg, name='TileMuonFitNum', xvalue='nMuons', title='Number of Tile MuonFit reconstructed', path='Tile/MuonFit', xbins=10, xmin=-0.5, xmax=9.5, type='TH1F', run=run, triggers=l1Triggers, perPartition=False) # 5) Configure histograms with number of Tile cells per MuonFit track addTile1DHistogramsArray(helper, tileMuonFitMonAlg, name='TileMuonFitNCells', xvalue='nCells', title='Number of Tile cells per MuonFit track', path='Tile/MuonFit', xbins=10, xmin=-0.5, xmax=9.5, type='TH1F', run=run, triggers=l1Triggers, perPartition=False) # 6) Configure histograms with Tile MuonFit total energy addTile1DHistogramsArray( helper, tileMuonFitMonAlg, name='TileMuonFitEnergy', xvalue='energy', title='Tile MuonFit total energy;Muon energy [MeV]', path='Tile/MuonFit', xbins=50, xmin=0., xmax=10000., type='TH1F', run=run, triggers=l1Triggers, perPartition=False) # 7) Configure histograms with Tile MuonFit time at y=0 plane addTile1DHistogramsArray( helper, tileMuonFitMonAlg, name='TileMuonFitTime', xvalue='time', title='Tile MuonFit time at y=0 plane;Muon time [ns]', path='Tile/MuonFit', xbins=49, xmin=-73.5, xmax=73.5, type='TH1F', run=run, triggers=l1Triggers, perPartition=False) # 8) Configure histograms with Tile MuonFit path addTile1DHistogramsArray( helper, tileMuonFitMonAlg, name='TileMuonFitPath', xvalue='path', title='Tile MuonFit total path length;Muon path length [mm]', path='Tile/MuonFit', xbins=50, xmin=0., xmax=10000., type='TH1F', run=run, triggers=l1Triggers, perPartition=False) # 9) Configure histograms with Tile MuonFit energy density addTile1DHistogramsArray( helper, tileMuonFitMonAlg, name='TileMuonFitEneDensity', xvalue='eneDensity', title='Tile MuonFit energy density;Muon energy loss [MeV/mm]', path='Tile/MuonFit', xbins=50, xmin=0., xmax=10., type='TH1F', run=run, triggers=l1Triggers, perPartition=False) # 10) Configure histograms with Tile MuonFit sinus of the angle in the x-y plane addTile1DHistogramsArray( helper, tileMuonFitMonAlg, name='TileMuonFitDirectionPhi', xvalue='phi', title='Tile MuonFit sinus of the angle in the x-y plane;sin(#phi)', path='Tile/MuonFit', xbins=100, xmin=-1., xmax=1., type='TH1F', run=run, triggers=l1Triggers, perPartition=False) # 11) Configure histograms with Tile MuonFit sinus of the angle in the y-z plane addTile1DHistogramsArray( helper, tileMuonFitMonAlg, name='TileMuonFitDirectionTheta', xvalue='theta', title='Tile MuonFit sinus of the angle in the y-z plane;sin(#theta)', path='Tile/MuonFit', xbins=50, xmin=0., xmax=1., type='TH1F', run=run, triggers=l1Triggers, perPartition=False) # 12) Configure histograms with Tile MuonFit sinus of the angle in the y-z plane addTile1DHistogramsArray( helper, tileMuonFitMonAlg, name='TileMuonFitPositionTime', xvalue='zPosition', value='time', title= 'Tile MuonFit average time vs z position at y=0 plane;z [mm]; t [ns]', path='Tile/MuonFit', xbins=79, xmin=-7900., xmax=7900., type='TProfile', run=run, triggers=l1Triggers, perPartition=False) from TileMonitoring.TileMonitoringCfgHelper import getPartitionName # 13) Configure histograms with Tile MuonFit partition time partitionLabels = [getPartitionName(ros) for ros in range(1, Tile.MAX_ROS)] addTile1DHistogramsArray( helper, tileMuonFitMonAlg, name='TileMuonFitPartitionTime', xvalue='partition', value='time', title='Tile MuonFit average time vs partition at y=0 plane;; t [ns]', path='Tile/MuonFit', xbins=Tile.MAX_ROS - 1, xmin=-0.5, xmax=Tile.MAX_ROS - 1.5, xlabels=partitionLabels, type='TProfile', run=run, triggers=l1Triggers, perPartition=False) accumalator = helper.result() result.merge(accumalator) return result
def TileRawChannelTimeMonitoringConfig(flags, **kwargs): ''' Function to configure TileRawChannelTimeMonitorAlgorithm algorithm in the monitoring system.''' # Define one top-level monitoring algorithm. The new configuration # framework uses a component accumulator. from AthenaConfiguration.ComponentAccumulator import ComponentAccumulator result = ComponentAccumulator() from TileRecUtils.TileDQstatusConfig import TileDQstatusAlgCfg result.merge(TileDQstatusAlgCfg(flags)) from TileGeoModel.TileGMConfig import TileGMCfg result.merge(TileGMCfg(flags)) from TileConditions.TileCablingSvcConfig import TileCablingSvcCfg result.merge(TileCablingSvcCfg(flags)) from TileConditions.TileBadChannelsConfig import TileBadChannelsCondAlgCfg result.merge(TileBadChannelsCondAlgCfg(flags, **kwargs)) kwargs.setdefault('CheckDCS', flags.Tile.useDCS) if kwargs['CheckDCS']: from TileConditions.TileDCSConfig import TileDCSCondAlgCfg result.merge(TileDCSCondAlgCfg(flags)) kwargs.setdefault('TriggerChain', '') # Partition pairs to monitor average time difference between partitions (ROS - 1) partitionPairs = [[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]] kwargs.setdefault('PartitionTimeDiffferncePairs', partitionPairs) # The following class will make a sequence, configure algorithms, and link # them to GenericMonitoringTools from AthenaMonitoring import AthMonitorCfgHelper helper = AthMonitorCfgHelper(flags, 'TileRawChannelTimeMonitoring') # Adding an TileCellMonitorAlgorithm algorithm to the helper from AthenaConfiguration.ComponentFactory import CompFactory TileRawChannelTimeMonitorAlgorithm = CompFactory.TileRawChannelTimeMonitorAlgorithm tileRawChanTimeMonAlg = helper.addAlgorithm( TileRawChannelTimeMonitorAlgorithm, 'TileRawChanTimeMonAlg') for k, v in kwargs.items(): setattr(tileRawChanTimeMonAlg, k, v) run = str(flags.Input.RunNumber[0]) # 1) Configure histogram with TileRawChannelTimeMonAlg algorithm execution time executeTimeGroup = helper.addGroup(tileRawChanTimeMonAlg, 'TileRawChanTimeMonExecuteTime', 'Tile/') executeTimeGroup.defineHistogram( 'TIME_execute', path='RawChannelTime', type='TH1F', title='Time for execute TileRawChanTimeMonAlg algorithm;time [#mus]', xbins=100, xmin=0, xmax=100000) from TileMonitoring.TileMonitoringCfgHelper import addTileModuleChannelMapsArray # 2) Configure histograms with status of Tile channel time per partition addTileModuleChannelMapsArray(helper, tileRawChanTimeMonAlg, name='TileAverageTime', title='Tile average time', path='Tile/RawChannelTime/Summary', type='TProfile2D', value='time', run=run) from TileMonitoring.TileMonitoringCfgHelper import addTile2DHistogramsArray # 3) Configure histograms with Tile partition average time vs luminosity block per partition addTile2DHistogramsArray( helper, tileRawChanTimeMonAlg, name='TileAverageTimeLB', xvalue='lumiBlock', yvalue='time', type='TH2D', title='Tile Average time vs LumiBlock;LumiBlock;t [ns]', path='Tile/RawChannelTime/Summary', run=run, perPartition=True, xbins=3000, xmin=-0.5, xmax=2999.5, ybins=149, ymin=-74.5, ymax=74.5) from TileMonitoring.TileMonitoringCfgHelper import getPartitionName # 4) Configure histograms with Tile partition average time difference vs luminosity block partitionPairs = kwargs['PartitionTimeDiffferncePairs'] partTimeDiffVsLBArray = helper.addArray([len(partitionPairs)], tileRawChanTimeMonAlg, 'TileAverageTimeDifferenceLB', topPath='Tile/RawChannelTime') for postfix, tool in partTimeDiffVsLBArray.Tools.items(): pairIdx = int(postfix.split('_').pop()) partitionName1, partitionName2 = [ getPartitionName(ros + 1) for ros in partitionPairs[pairIdx] ] title = 'Run %s: Average time between %s and %s' % ( run, partitionName1, partitionName2) title += ' vs luminosity block;LumiBlock;t [ns]' name = 'lumiBlock,time;TileAverageTimeDifferenceLB_%s-%s' % ( partitionName1, partitionName2) tool.defineHistogram(name, title=title, path='Summary', type='TProfile', xbins=1000, xmin=-0.5, xmax=999.5, opt='kAddBinsDynamically') from TileCalibBlobObjs.Classes import TileCalibUtils as Tile # 5) Configure histograms with Tile digitizer time vs luminosity block per digitizer maxDigitizer = 8 digiTimeVsLBArray = helper.addArray( [int(Tile.MAX_ROS - 1), int(Tile.MAX_DRAWER), maxDigitizer], tileRawChanTimeMonAlg, 'TileDigitizerTimeLB', topPath='Tile/RawChannelTime') for postfix, tool in digiTimeVsLBArray.Tools.items(): ros, module, digitizer = [int(x) for x in postfix.split('_')[1:]] moduleName = Tile.getDrawerString(ros + 1, module) title = 'Run ' + run + ' ' + moduleName + ' Digitizer ' + str( digitizer) title += ': Time vs luminosity block;LumiBlock;t [ns]' name = 'lumiBlock,time;TileDigitizerTimeLB_' + moduleName + '_DIGI_' + str( digitizer) path = getPartitionName(ros + 1) + '/' + moduleName tool.defineHistogram(name, title=title, path=path, type='TProfile', xbins=1000, xmin=-0.5, xmax=999.5, opt='kAddBinsDynamically') accumalator = helper.result() result.merge(accumalator) return result
def TrigBjetMonConfig(inputFlags): '''Function to configures some algorithms in the monitoring system.''' ### STEP 1 ### # Define one top-level monitoring algorithm. The new configuration # framework uses a component accumulator. # EN: not needed here now # from AthenaConfiguration.ComponentAccumulator import ComponentAccumulator # result = ComponentAccumulator() # The following class will make a sequence, configure algorithms, and link # them to GenericMonitoringTools from AthenaMonitoring import AthMonitorCfgHelper helper = AthMonitorCfgHelper(inputFlags,'TrigBjetAthMonitorCfg') ### STEP 2 ### # Adding an algorithm to the helper. Here, we will use the example # algorithm in the AthenaMonitoring package. Just pass the type to the # helper. Then, the helper will instantiate an instance and set up the # base class configuration following the inputFlags. The returned object # is the algorithm. #The added algorithm must exist as a .h file from TrigBjetMonitoring.TrigBjetMonitoringConf import TrigBjetMonitorAlgorithm trigBjetMonAlg = helper.addAlgorithm(TrigBjetMonitorAlgorithm,'TrigBjetMonAlg') # You can actually make multiple instances of the same algorithm and give # them different configurations shifterTrigBjetMonAlg = helper.addAlgorithm(TrigBjetMonitorAlgorithm,'ShifterTrigBjetMonAlg') # # If for some really obscure reason you need to instantiate an algorithm # # yourself, the AddAlgorithm method will still configure the base # # properties and add the algorithm to the monitoring sequence. # helper.AddAlgorithm(myExistingAlg) ### STEP 3 ### # Edit properties of a algorithm # some generic property # trigBjetMonAlg.RandomHist = True # to enable a trigger filter, for example: #trigBjetMonAlg.TriggerChain = 'HLT_mu26_ivarmedium' #trigBjetMonAlg.TriggerChain = 'HLT_e24_lhtight_nod0' trigBjetMonAlg.TriggerChain = '' ### STEP 4 ### # Read in the Bjet trigger chain names # Directly from TrigBjetMonitCategory #from TrigBjetMonitoring import TrigBjetMonitCategory #bjet_triglist = TrigBjetMonitCategory.monitoring_bjet # From the hltmonList where TrigHLTMonitoring filtered the run type from TrigHLTMonitoring.HLTMonTriggerList import hltmonList bjet_triglist = hltmonList.monitoring_bjet bjet_triglist += hltmonList.monitoring_mujet # print " ==> bjet_triglist: ", bjet_triglist # Add some tools. N.B. Do not use your own trigger decion tool. Use the # standard one that is included with AthMonitorAlgorithm. # # First, add a tool that's set up by a different configuration function. # # In this case, CaloNoiseToolCfg returns its own component accumulator, # # which must be merged with the one from this function. # from CaloTools.CaloNoiseToolConfig import CaloNoiseToolCfg # caloNoiseAcc, caloNoiseTool = CaloNoiseToolCfg(inputFlags) # result.merge(caloNoiseAcc) # trigBjetMonAlg.CaloNoiseTool = caloNoiseTool # # Then, add a tool that doesn't have its own configuration function. In # # this example, no accumulator is returned, so no merge is necessary. # from MyDomainPackage.MyDomainPackageConf import MyDomainTool # trigBjetMonAlg.MyDomainTool = MyDomainTool() # Add a generic monitoring tool (a "group" in old language). The returned # object here is the standard GenericMonitoringTool. myGroup = helper.addGroup( trigBjetMonAlg, 'TrigBjetMonitor', 'HLT/BjetMon/Expert/' ) # Add a GMT for the other example monitor algorithm shifterGroup = helper.addGroup(shifterTrigBjetMonAlg,'TrigBjetMonitor','HLT/BjetMon/Shifter/') ### STEP 5 ### # Configure histograms #NB! The histograms defined here must match the ones in the cxx file exactly # Offline PV histograms - common for all trigger chains shifterGroup.defineHistogram('Off_NVtx', title='Number of Offline Vertices;NVtx;Events', path='Offline',xbins=100,xmin=0.0,xmax=100.) shifterGroup.defineHistogram('Off_xVtx', title='Offline xVtx;xVtx;Events', path='Offline',xbins=200,xmin=-1.5,xmax=+1.5) shifterGroup.defineHistogram('Off_yVtx', title='Offline yVtx;yVtx;Events', path='Offline',xbins=200,xmin=-1.5,xmax=+1.5) shifterGroup.defineHistogram('Off_zVtx', title='Offline zVtx;zVtx;Events', path='Offline',xbins=200,xmin=-200.0,xmax=+200.0) # Histograms which depend on the trigger chain AllChains = [] for chain in bjet_triglist : AllChains.append(chain[2:]) # print " inside bjet_triglist chain[2:8] : " , chain[2:8] if chain[2:8] == 'HLT_mu' : # mu-jets # print " mu-jet histogram is defined for ", chain[2:] HistName = 'jetPt_' + chain[2:] if chain[0:1] == "E" : myGroup.defineHistogram(HistName, title='Distribution of Pt_jet;Pt_jet;Events', path=chain[2:],xbins=100,xmin=-0.0,xmax=750.0) # print " ==> histogam ",HistName," is defined for myGroup" if chain[0:1] == "S" : shifterGroup.defineHistogram(HistName, title='Distribution of Pt_jet;Pt_jet;Events', path=chain[2:],xbins=100,xmin=-0.0,xmax=750.0) # print " ==> histogam ",HistName," is defined for shifterGroup" continue else : # b-jets # print " b-jet histogram is defined for ", chain[2:] HistName = 'PVz_tr_' + chain[2:] if chain[0:1] == "E" : myGroup.defineHistogram(HistName, title='Distribution of online zPV;zPV;Events', path=chain[2:],xbins=200,xmin=-200.0,xmax=200.0) # print " ==> histogam ",HistName," is defined for myGroup" if chain[0:1] == "S" : shifterGroup.defineHistogram(HistName, title='Distribution of online zPV;zPV;Events', path=chain[2:],xbins=200,xmin=-200.0,xmax=200.0) # print " ==> histogam ",HistName," is defined for shifterGroup" HistName = 'd0_' + chain[2:] if chain[0:1] == "E" : myGroup.defineHistogram(HistName, title='Distribution of d0;d0;Events', path=chain[2:],xbins=200,xmin=-2.0,xmax=2.0) # print " ==> histogam ",HistName," is defined for myGroup" if chain[0:1] == "S" : shifterGroup.defineHistogram(HistName, title='Distribution of d0;d0;Events', path=chain[2:],xbins=200,xmin=-2.0,xmax=2.0) # print " ==> histogam ",HistName," is defined for shifterGroup" HistName = 'jetPt_' + chain[2:] if chain[0:1] == "E" : myGroup.defineHistogram(HistName, title='Distribution of Pt_jet;Pt_jet;Events', path=chain[2:],xbins=100,xmin=-0.0,xmax=750.0) # print " ==> histogam ",HistName," is defined for myGroup" if chain[0:1] == "S" : shifterGroup.defineHistogram(HistName, title='Distribution of Pt_jet;Pt_jet;Events', path=chain[2:],xbins=100,xmin=-0.0,xmax=750.0) # print " ==> histogam ",HistName," is defined for shifterGroup" HistName = 'wMV2c20_' + chain[2:] if chain[0:1] == "E" : myGroup.defineHistogram(HistName, title='Distribution of MV2c20 discriminant;MV2c20;Events', path=chain[2:],xbins=200,xmin=-1.0,xmax=1.0) # print " ==> histogam ",HistName," is defined for myGroup" if chain[0:1] == "S" : shifterGroup.defineHistogram(HistName, title='Distribution of MV2c20 discriminant;MV2c20;Events', path=chain[2:],xbins=200,xmin=-1.0,xmax=1.0) # print " ==> histogam ",HistName," is defined for shifterGroup" continue # print " ==> In TrigBjetMonitorAlgorithm.py: AllChains list: ", AllChains trigBjetMonAlg.AllChains = AllChains shifterTrigBjetMonAlg.AllChains = AllChains ### STEP 6 ### # Finalize. The return value should be a tuple of the ComponentAccumulator # and the sequence containing the created algorithms. If we haven't called # any configuration other than the AthMonitorCfgHelper here, then we can # just return directly (and not create "result" above) return helper.result()
def SCTHitEffMonAlgConfig(inputFlags): '''Function to configures some algorithms in the monitoring system.''' ### STEP 1 ### # Define one top-level monitoring algorithm. The new configuration # framework uses a component accumulator. from AthenaConfiguration.ComponentAccumulator import ComponentAccumulator result = ComponentAccumulator() # The following class will make a sequence, configure algorithms, and link # them to GenericMonitoringTools from AthenaMonitoring import AthMonitorCfgHelper helper = AthMonitorCfgHelper(inputFlags, 'SCTHitEffMonCfg') ### STEP 2 ### # Adding an algorithm to the helper. Here, we will use the example # algorithm in the AthenaMonitoring package. Just pass the type to the # helper. Then, the helper will instantiate an instance and set up the # base class configuration following the inputFlags. The returned object # is the algorithm. from AthenaConfiguration.ComponentFactory import CompFactory myMonAlg = helper.addAlgorithm(CompFactory.SCTHitEffMonAlg, 'SCTHitEffMonAlg') # # If for some really obscure reason you need to instantiate an algorithm # # yourself, the AddAlgorithm method will still configure the base # # properties and add the algorithm to the monitoring sequence. # helper.AddAlgorithm(myExistingAlg) ### STEP 3 ### # Edit properties of a algorithm myMonAlg.TriggerChain = '' from LumiBlockComps.BunchCrossingCondAlgConfig import BunchCrossingCondAlgCfg result.merge(BunchCrossingCondAlgCfg(inputFlags)) from MagFieldServices.MagFieldServicesConfig import MagneticFieldSvcCfg result.merge(MagneticFieldSvcCfg(inputFlags)) ### STEP 4 ### # Add some tools. N.B. Do not use your own trigger decion tool. Use the # standard one that is included with AthMonitorAlgorithm. # set up geometry / conditions from AtlasGeoModel.InDetGMConfig import InDetGeometryCfg result.merge(InDetGeometryCfg(inputFlags)) # Add a generic monitoring tool (a "group" in old language). The returned # object here is the standard GenericMonitoringTool. from ROOT import SCT_Monitoring as sctMon myMonGroup = [ helper.addGroup(myMonAlg, "SCTHitEffMonitorEC", "SCT/SCTEC/"), helper.addGroup(myMonAlg, "SCTHitEffMonitorB", "SCT/SCTB/"), helper.addGroup(myMonAlg, "SCTHitEffMonitorEA", "SCT/SCTEA/"), helper.addGroup(myMonAlg, "SCTHitEffMonitor", "SCT/GENERAL/") ] ### STEP 5 ### # Configure histograms # Conversion of ROOT.vector of ROOT.TString to list of str subDetName = [] for i in range(len(sctMon.subDetName)): subDetName.append(sctMon.subDetName[i].Data()) mapName = ["m_eff_", "eff_", "p_eff_"] ineffmapName = ["ineffm_", "ineff_", "ineffp_"] sumEff = ["summaryeffm", "summaryeff", "summaryeffp"] sumEffTitle = [ "Summary Module Efficiency in Endcap C", "Summary Module Efficiency in Barrel", "Summary Module Efficiency in Endcap A" ] limit = [sctMon.N_DISKS * 2, sctMon.N_BARRELS * 2, sctMon.N_DISKS * 2] # GENERAL myMonGroup[sctMon.GENERAL_INDEX].defineHistogram( varname="isub, eff;" + "SctTotalEff", type="TProfile", title="SCT Total Efficiency", path="eff", xbins=sctMon.N_REGIONS, xmin=0., xmax=sctMon.N_REGIONS, xlabels=subDetName) myMonGroup[sctMon.GENERAL_INDEX].defineHistogram( varname="isub, eff;" + "SctTotalEffBCID", type="TProfile", title="SCT Total Efficiency for First BCID", path="eff", xbins=sctMon.N_REGIONS, xmin=0., xmax=sctMon.N_REGIONS, xlabels=subDetName, cutmask="isFirstBCID") myMonGroup[sctMon.GENERAL_INDEX].defineHistogram( varname="sideHash, eff;" + "effHashCode", type="TProfile", title="Efficiency vs module Hash code" + ";Module Hash Code;Efficiency", path="eff", xbins=sctMon.n_mod[sctMon.GENERAL_INDEX] * 2, xmin=-0.5, xmax=sctMon.n_mod[sctMon.GENERAL_INDEX] * 2 - 0.5) myMonGroup[sctMon.GENERAL_INDEX].defineHistogram( varname="LumiBlock, eff;" + "effLumiBlock", type="TProfile", title="Efficiency vs Luminosity block" + ";;Efficiency", path="eff", xbins=sctMon.NBINS_LBs, xmin=0.5, xmax=sctMon.NBINS_LBs + 0.5) ### This histogram should be filled by post processing ### # myMonGroup[sctMon.GENERAL_INDEX].defineHistogram(varname= "eff;" + "SctEffDistribution", # type= "TH1F", # title= "SCT Efficiency Distribution"+";Efficiency;Links", # path="eff", # xbins= 500, # xmin=0., # xmax=1.) # SCTEC, SCTB, SCTEA for isub in range(sctMon.N_REGIONS): profileLabels = range(limit[isub]) for k in range(limit[isub]): profileLabels[k] = dedicatedTitle(k, isub) # Efficiency myMonGroup[isub].defineHistogram( varname="layerPlusHalfSide, eff;" + sumEff[isub], type="TProfile", title=sumEffTitle[isub] + ";;Efficiency", path="eff", xbins=2 * sctMon.n_layers[isub], xmin=0., xmax=sctMon.n_layers[isub], xlabels=profileLabels) # Efficiency for first BCIDs myMonGroup[isub].defineHistogram( varname="layerPlusHalfSide, eff;" + sumEff[isub] + "BCID", type="TProfile", title=sumEffTitle[isub] + " for First BC" + ";;Efficiency", path="eff", xbins=2 * sctMon.n_layers[isub], xmin=0., xmax=sctMon.n_layers[isub], xlabels=profileLabels, cutmask="isFirstBCID") # Efficiency as a function of LB myMonGroup[isub].defineHistogram( varname="LumiBlock, eff;" + "effLumiBlock", #different names for fill type="TProfile", title="Efficiency vs Luminosity block in " + sctMon.subDetName[isub] + ";Luminosity block" + ";Efficiency", path="eff", xbins=sctMon.NBINS_LBs, xmin=0.5, xmax=sctMon.NBINS_LBs + 0.5) # Disks for SCTEC and SCTEA and layers for SCTB for layer_disk in range(sctMon.n_layers[isub]): for side in range(2): etaPhiSuffix = "_" + str(layer_disk) + "_" + str(side) effName = mapName[isub] + str(layer_disk) + "_" + str(side) ineffName = ineffmapName[isub] + str(layer_disk) + "_" + str( side) # Efficiency myMonGroup[isub].defineHistogram( varname="ieta" + etaPhiSuffix + ",iphi" + etaPhiSuffix + ",eff;" + effName, type="TProfile2D", title="Hit efficiency of" + sctMon.layerName[isub].Data() + str(layer_disk) + " / side " + str(side) + " in " + subDetName[isub] + ";Index in the direction of #eta;Index in the direction of #phi", path="eff", xbins=sctMon.n_etabins[isub], xmin=sctMon.f_etabin[isub] - .5, xmax=sctMon.l_etabin[isub] + .5, ybins=sctMon.n_phibins[isub], ymin=sctMon.f_phibin[isub] - .5, ymax=sctMon.l_phibin[isub] + .5) # Efficiency for first BCIDs myMonGroup[isub].defineHistogram( varname="ieta" + etaPhiSuffix + ",iphi" + etaPhiSuffix + ",eff;" + effName + "_bcid", type="TProfile2D", title="Hit efficiency of" + sctMon.layerName[isub].Data() + str(layer_disk) + " / side " + str(side) + " in " + subDetName[isub] + " for first BCID" + ";Index in the direction of #eta;Index in the direction of #phi", path="eff", xbins=sctMon.n_etabins[isub], xmin=sctMon.f_etabin[isub] - .5, xmax=sctMon.l_etabin[isub] + .5, ybins=sctMon.n_phibins[isub], ymin=sctMon.f_phibin[isub] - .5, ymax=sctMon.l_phibin[isub] + .5, cutmask="isFirstBCID") # Inefficiency myMonGroup[isub].defineHistogram( varname="ieta" + etaPhiSuffix + ",iphi" + etaPhiSuffix + ",ineff;" + ineffName, type="TProfile2D", title="Hit inefficiency of" + sctMon.layerName[isub].Data() + str(layer_disk) + " / side " + str(side) + " in " + subDetName[isub] + ";Index in the direction of #eta;Index in the direction of #phi", path="eff", xbins=sctMon.n_etabins[isub], xmin=sctMon.f_etabin[isub] - .5, xmax=sctMon.l_etabin[isub] + .5, ybins=sctMon.n_phibins[isub], ymin=sctMon.f_phibin[isub] - .5, ymax=sctMon.l_phibin[isub] + .5) # Merge with result object and return result.merge(helper.result()) return result
def SCTLorentzMonAlgConfig(inputFlags): ### STEP 1 ### # Define one top-level monitoring algorithm. The new configuration # framework uses a component accumulator. from AthenaConfiguration.ComponentAccumulator import ComponentAccumulator result = ComponentAccumulator() # The following class will make a sequence, configure algorithms, and link # them to GenericMonitoringTools from AthenaMonitoring import AthMonitorCfgHelper helper = AthMonitorCfgHelper(inputFlags, 'SCTLorentzMonCfg') ### STEP 2 ### # Adding an algorithm to the helper. Here, we will use the example # algorithm in the AthenaMonitoring package. Just pass the type to the # helper. Then, the helper will instantiate an instance and set up the # base class configuration following the inputFlags. The returned object # is the algorithm. from AthenaConfiguration.ComponentFactory import CompFactory myMonAlg = helper.addAlgorithm(CompFactory.SCTLorentzMonAlg, 'SCTLorentzMonAlg') # # If for some really obscure reason you need to instantiate an algorithm # # yourself, the AddAlgorithm method will still configure the base # # properties and add the algorithm to the monitoring sequence. # helper.AddAlgorithm(myExistingAlg) ### STEP 3 ### # Edit properties of a algorithm myMonAlg.TriggerChain = '' # myMonAlg.RandomHist = True # Set InDetTrackSummaryTool to TrackSummaryTool of SCTLorentzMonAlg from .TrackSummaryToolWorkaround import TrackSummaryToolWorkaround myMonAlg.TrackSummaryTool = result.popToolsAndMerge( TrackSummaryToolWorkaround(inputFlags)) ### STEP 4 ### # Add some tools. N.B. Do not use your own trigger decion tool. Use the # standard one that is included with AthMonitorAlgorithm. # set up geometry / conditions from BeamPipeGeoModel.BeamPipeGMConfig import BeamPipeGeometryCfg result.merge(BeamPipeGeometryCfg(inputFlags)) from AtlasGeoModel.InDetGMConfig import InDetGeometryCfg result.merge(InDetGeometryCfg(inputFlags)) # # Then, add a tool that doesn't have its own configuration function. In # # this example, no accumulator is returned, so no merge is necessary. # from MyDomainPackage.MyDomainPackageConf import MyDomainTool # myMonAlg.MyDomainTool = MyDomainTool() # Add a generic monitoring tool (a "group" in old language). The returned # object here is the standard GenericMonitoringTool. myMonGroup = helper.addGroup(myMonAlg, "SCTLorentzMonitor", "SCT/GENERAL/") ### STEP 5 ### # Configure histograms N_BARRELS = 4 nSides = 2 # 0: Side 0, 1: Side 1 nSurfaces = 2 # 0: 100, 1: 111 surfaceNames = ["_100", "_111"] surfaceNames2 = ["_100_", "_111_"] surfaceTitles = ["100 - ", "111 - "] sideNames = ["_0", "_1"] for l in range(N_BARRELS): for iSurface in range(nSurfaces): for side in range(nSides): xVar = "phiToWafer_" + str( l) + surfaceNames[iSurface] + sideNames[side] yVar = "nStrip_" + str( l) + surfaceNames[iSurface] + sideNames[side] histTitle = surfaceTitles[ iSurface] + "Inc. Angle vs nStrips for Layer Side" + str( l) + str(side) histName = "h_phiVsNstrips" + surfaceNames2[iSurface] + str( l) + "Side" + str(side) myMonGroup.defineHistogram( varname=xVar + "," + yVar + ";" + histName, # ; means alias type="TProfile", title=histTitle + ";#phi to Wafer;Num of Strips", path="lorentz", # path cannot be "". xbins=360, xmin=-90., xmax=90.) ### STEP 6 ### # Finalize. The return value should be a tuple of the ComponentAccumulator # and the sequence containing the created algorithms. If we haven't called # any configuration other than the AthMonitorCfgHelper here, then we can # just return directly (and not create "result" above) #return helper.result() # # Otherwise, merge with result object and return result.merge(helper.result()) return result
# # Copyright (C) 2002-2019 CERN for the benefit of the ATLAS collaboration # '''@file TgcRawDataMonitorAlgorithm_jobOptions.py @author M.Aoki @date 2019-10-04 ''' from AthenaMonitoring import AthMonitorCfgHelper helper = AthMonitorCfgHelper(DQMonFlags, "TgcRawDataMonitorCfg") from TgcRawDataMonitoring.TgcRawDataMonitoringConf import TgcRawDataMonitorAlgorithm tgcRawDataMonAlg = helper.addAlgorithm(TgcRawDataMonitorAlgorithm, 'TgcRawDataMonAlg') tgcRawDataMonAlg.TagAndProbe = False tgcRawDataMonAlg.TagTrigList = 'HLT_mu26_ivarmedium' tgcRawDataMonAlg.TagTrigList += ',HLT_mu26_ivarmedium' tgcRawDataMonAlg.TagTrigList += ',HLT_mu26_ivarmedium_L1MU20' tgcRawDataMonAlg.TagTrigList += ',HLT_mu6' tgcRawDataMonAlg.TagTrigList += ',HLT_mu6_L1MU6' tgcRawDataMonAlg.TagTrigList += ',HLT_mu20_mu8noL1;HLT_mu20' mainDir = 'Muon/MuonRawDataMonitoring/TGC/' pi = 3.14159265359 trigPath = 'Trig/' myGroup = helper.addGroup(tgcRawDataMonAlg, 'TgcRawDataMonitor', mainDir)
def PprMonitoringConfig(inputFlags): '''Function to configure LVL1 Ppr algorithm in the monitoring system.''' import math # get the component factory - used for getting the algorithms from AthenaConfiguration.ComponentFactory import CompFactory from AthenaConfiguration.ComponentAccumulator import ComponentAccumulator result = ComponentAccumulator() # any things that need setting up for job e.g. #from AtlasGeoModel.AtlasGeoModelConfig import AtlasGeometryCfg #result.merge(AtlasGeometryCfg(inputFlags)) # make the athena monitoring helper from AthenaMonitoring import AthMonitorCfgHelper helper = AthMonitorCfgHelper(inputFlags, 'PprMonitoringCfg') # get any algorithms PprMonAlg = helper.addAlgorithm(CompFactory.PprMonitorAlgorithm, 'PprMonAlg') # add any steering groupName = 'PprMonitor' # the monitoring group name is also used for the package name PprMonAlg.PackageName = groupName # Steering properties threshADC = 50 PprMonAlg.TT_ADC_HitMap_Thresh = threshADC # ADC cut for hit maps # Histogram paths mainDir = 'L1Calo' trigPath = 'PPM/' # add monitoring algorithm to group, with group name and main directory myGroup = helper.addGroup(PprMonAlg, groupName, mainDir) # Trigger tower plots: eta-phi granularity etabins = [ -4.9, -4.475, -4.050, -3.625, -3.2, -3.1, -2.9, -2.7, -2.5, -2.4, -2.3, -2.2, -2.1, -2.0, -1.9, -1.8, -1.7, -1.6, -1.5, -1.4, -1.3, -1.2, -1.1, -1.0, -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.7, 2.9, 3.1, 3.2, 3.625, 4.050, 4.475, 4.9 ] phibins = 64 phimin = 0 phimax_2d = 64 phimax_1d = 2. * math.pi maxEnergyRange = 256 ####################### # PPM inputs (LUT-CP) # ####################### histPath = trigPath + '/LUT-CP/Distributions' # EM distributions myGroup.defineHistogram( 'etaTT_EM;h_ppm_em_1d_tt_lutcp_Eta', title='EM LUT-CP: Distribution of peak in #eta; #eta', type='TH1F', path=histPath, xbins=etabins, cutmask='mask_EM_cpET_0_noPhi') myGroup.defineHistogram( 'phiTT_1d_EM;h_ppm_em_1d_tt_lutcp_Phi', title='EM LUT-CP: Distribution of peak in #phi; #phi', type='TH1F', path=histPath, xbins=phibins, xmin=phimin, xmax=phimax_1d, cutmask='mask_EM_cpET_0_phiBins') myGroup.defineHistogram( 'cpET_EM;h_ppm_em_1d_tt_lutcp_Et', title='EM LUT-CP: Distribution of peak; EM LUT peak [GeV/2]', type='TH1F', path=histPath, xbins=maxEnergyRange - 1, xmin=1, xmax=maxEnergyRange, cutmask='mask_EM_cpET_0_noPhi') # HAD distributions myGroup.defineHistogram( 'etaTT_HAD;h_ppm_had_1d_tt_lutcp_Eta', title='HAD LUT-CP: Distribution of peak in #eta; #eta', type='TH1F', path=histPath, xbins=etabins, cutmask='mask_HAD_cpET_0_noPhi') myGroup.defineHistogram( 'phiTT_1d_HAD;h_ppm_had_1d_tt_lutcp_Phi', title='HAD LUT-CP: Distribution of peak in #phi; #phi', type='TH1F', path=histPath, xbins=phibins, xmin=phimin, xmax=phimax_1d, cutmask='mask_HAD_cpET_0_phiBins') myGroup.defineHistogram( 'cpET_HAD;h_ppm_had_1d_tt_lutcp_Et', title='HAD LUT-CP: Distribution of peak; HAD LUT peak [GeV/2]', type='TH1F', path=histPath, xbins=maxEnergyRange - 1, xmin=1, xmax=maxEnergyRange, cutmask='mask_HAD_cpET_0_noPhi') # Eta-phi maps histPath = trigPath + '/LUT-CP/EtaPhiMaps' myGroup.defineHistogram( 'etaTT_EM,phiTT_2d_EM;h_ppm_em_2d_etaPhi_tt_lutcp_AverageEt', title='EM Average LUT-CP Et for Et > 5 GeV/2', type='TH2F', path=histPath, xbins=etabins, ybins=phibins, ymin=phimin, ymax=phimax_2d, cutmask='mask_EM_cpET_5_phiBins', weight='cpET_EM') myGroup.defineHistogram( 'etaTT_HAD,phiTT_2d_HAD;h_ppm_had_2d_etaPhi_tt_lutcp_AverageEt', title='HAD Average LUT-CP Et for Et > 5 GeV/2', type='TH2F', path=histPath, xbins=etabins, ybins=phibins, ymin=phimin, ymax=phimax_2d, cutmask='mask_HAD_cpET_5_phiBins', weight='cpET_HAD') ######################## # PPM inputs (LUT-JEP) # ######################## histPath = trigPath + '/LUT-JEP/Distributions' # EM distributions myGroup.defineHistogram('etaTT_EM;h_ppm_em_1d_tt_lutjep_Eta', title='EM LUT-JEP: Distribution of peak in #eta', type='TH1F', path=histPath, xbins=etabins, cutmask='mask_EM_jepET_0_noPhi') myGroup.defineHistogram( 'phiTT_1d_EM;h_ppm_em_1d_tt_lutjep_Phi', title='EM LUT-JEP: Distribution of peak in #phi; #phi', type='TH1F', path=histPath, xbins=phibins, xmin=phimin, xmax=phimax_1d, cutmask='mask_EM_jepET_0_phiBins') myGroup.defineHistogram( 'jepET_EM;h_ppm_em_1d_tt_lutjep_Et', title='EM LUT-JEP: Distribution of peak; EM LUT peak [GeV]', type='TH1F', path=histPath, xbins=maxEnergyRange - 1, xmin=1, xmax=maxEnergyRange, cutmask='mask_EM_jepET_0_noPhi') # HAD distributions myGroup.defineHistogram('etaTT_HAD;h_ppm_had_1d_tt_lutjep_Eta', title='HAD LUT-JEP: Distribution of peak in #eta', type='TH1F', path=histPath, xbins=etabins, cutmask='mask_HAD_jepET_0_noPhi') myGroup.defineHistogram( 'phiTT_1d_HAD;h_ppm_had_1d_tt_lutjep_Phi', title='HAD LUT-JEP: Distribution of peak in #phi; #phi', type='TH1F', path=histPath, xbins=phibins, xmin=phimin, xmax=phimax_1d, cutmask='mask_HAD_jepET_0_phiBins') myGroup.defineHistogram( 'jepET_HAD;h_ppm_had_1d_tt_lutjep_Et', title='HAD LUT-JEP: Distribution of peak; HAD LUT peak [GeV]', type='TH1F', path=histPath, xbins=maxEnergyRange - 1, xmin=1, xmax=maxEnergyRange, cutmask='mask_HAD_jepET_0_noPhi') # Eta-phi maps histPath = trigPath + '/LUT-JEP/EtaPhiMaps' myGroup.defineHistogram( 'etaTT_EM,phiTT_2d_EM;h_ppm_em_2d_etaPhi_tt_lutjep_AverageEt', title='EM Average LUT-JEP Et for Et > 5 GeV', type='TH2F', path=histPath, xbins=etabins, ybins=phibins, ymin=phimin, ymax=phimax_2d, cutmask='mask_EM_jepET_5_phiBins', weight='jepET_EM') myGroup.defineHistogram( 'etaTT_HAD,phiTT_2d_HAD;h_ppm_had_2d_etaPhi_tt_lutjep_AverageEt', title='HAD Average LUT-JEP Et for Et > 5 GeV', type='TH2F', path=histPath, xbins=etabins, ybins=phibins, ymin=phimin, ymax=phimax_2d, cutmask='mask_HAD_jepET_5_phiBins', weight='jepET_HAD') #################### # PPM inputs (ADC) # #################### histPath = trigPath + '/ADC/EtaPhiMaps' # EM tower maps myGroup.defineHistogram( 'etaTT_EM,phiTT_2d_EM;h_ppm_em_2d_etaPhi_tt_adc_HitMap', title='#eta - #phi map of EM FADC > ' + str(threshADC) + ' for triggered timeslice; Tower #eta; Tower #phi', type='TH2F', path=histPath, xbins=etabins, ybins=phibins, ymin=phimin, ymax=phimax_2d, cutmask='mask_EM_timeslice') myGroup.defineHistogram( 'etaTT_EM,phiTT_2d_EM;h_ppm_em_2d_etaPhi_tt_adc_ProfileHitMap', title='#eta - #phi profile map of EM FADC > ' + str(threshADC) + ' for triggered timeslice; Tower #eta; Tower #phi', type='TH2F', path=histPath, xbins=etabins, ybins=phibins, ymin=phimin, ymax=phimax_2d, cutmask='mask_EM_timeslice', weight='emTT_ADC') # HAD tower maps myGroup.defineHistogram( 'etaTT_HAD,phiTT_2d_HAD;h_ppm_had_2d_etaPhi_tt_adc_HitMap', title='#eta - #phi map of HAD FADC > ' + str(threshADC) + ' for triggered timeslice; Tower #eta; Tower #phi', type='TH2F', path=histPath, xbins=etabins, ybins=phibins, ymin=phimin, ymax=phimax_2d, cutmask='mask_HAD_timeslice') myGroup.defineHistogram( 'etaTT_HAD,phiTT_2d_HAD;h_ppm_had_2d_etaPhi_tt_adc_ProfileHitMap', title='#eta - #phi profile map of HAD FADC > ' + str(threshADC) + ' for triggered timeslice; Tower #eta; Tower #phi', type='TH2F', path=histPath, xbins=etabins, ybins=phibins, ymin=phimin, ymax=phimax_2d, cutmask='mask_HAD_timeslice', weight='hadTT_ADC') acc = helper.result() result.merge(acc) return result
def TileClusterMonitoringConfig(flags, **kwargs): ''' Function to configure TileClusterMonitorAlgorithm algorithm in the monitoring system.''' # Define one top-level monitoring algorithm. The new configuration # framework uses a component accumulator. from AthenaConfiguration.ComponentAccumulator import ComponentAccumulator result = ComponentAccumulator() from TileMonitoring.TileTopoClusterConfig import TileTopoClusterCfg result.merge(TileTopoClusterCfg(flags)) # The following class will make a sequence, configure algorithms, and link # them to GenericMonitoringTools from AthenaMonitoring import AthMonitorCfgHelper helper = AthMonitorCfgHelper(flags, 'TileClusterMonitoring') # Adding an TileCellMonitorAlgorithm algorithm to the helper from AthenaConfiguration.ComponentFactory import CompFactory tileClusterMonAlg = helper.addAlgorithm( CompFactory.TileClusterMonitorAlgorithm, 'TileClusterMonAlg') tileClusterMonAlg.TriggerChain = '' # from AthenaCommon.SystemOfUnits import MeV #kwargs.setdefault('EnergyThreshold', 50.0 * MeV) # L1Trigger Type Bits: # bit0_RNDM, bit1_ZeroBias, bit2_L1Cal, bit3_Muon, # bit4_RPC, bit5_FTK, bit6_CTP, bit7_Calib, AnyPhysTrig kwargs.setdefault('fillHistogramsForL1Triggers', ['AnyPhysTrig', 'bit7_Calib']) l1Triggers = kwargs['fillHistogramsForL1Triggers'] kwargs.setdefault('fillTimingHistograms', flags.Common.isOnline) fillTimingHistograms = kwargs['fillTimingHistograms'] for k, v in kwargs.items(): setattr(tileClusterMonAlg, k, v) run = str(flags.Input.RunNumber[0]) # 1) Configure histogram with TileClusterMonAlg algorithm execution time executeTimeGroup = helper.addGroup(tileClusterMonAlg, 'TileClusterMonExecuteTime', 'Tile/') executeTimeGroup.defineHistogram( 'TIME_execute', path='Cluster', type='TH1F', title='Time for execute TileClusterMonAlg algorithm;time [#mus]', xbins=100, xmin=0, xmax=1000) from TileCalibBlobObjs.Classes import TileCalibUtils as Tile from TileMonitoring.TileMonitoringCfgHelper import addTileEtaPhiMapsArray # ) Configure histograms with most energetic Tile tower position addTileEtaPhiMapsArray(helper, tileClusterMonAlg, name='TileClusterEtaPhi', type='TH2D', title='Most energetic Tile Cluster position', path='Tile/Cluster', run=run, triggers=l1Triggers, perSample=False) # ) Configure histograms with most energetic Tile tower position addTileEtaPhiMapsArray(helper, tileClusterMonAlg, name='TileAllClusterEtaPhi', type='TH2D', title='All Tile Cluster position', path='Tile/Cluster', run=run, triggers=l1Triggers, perSample=False) # ) Configure histograms with most energetic Tile tower position addTileEtaPhiMapsArray(helper, tileClusterMonAlg, name='TileAllClusterEneEtaPhi', type='TProfile2D', value='energy', title='All Tile Cluster everage energy [MeV]', path='Tile/Cluster', run=run, triggers=l1Triggers, perSample=False) # ) Configure histograms with position correlation of Tile cluster opposite to most energetic cluster addTileEtaPhiMapsArray( helper, tileClusterMonAlg, name='TileClusterEtaPhiDiff', type='TH2D', title= 'Position correlation of Tile Cluster opposite to most energetic cluster', path='Tile/Cluster', run=run, triggers=l1Triggers, perSample=False, etaTitle='#Delta #eta', etabins=21, etamin=-2.025, etamax=2.025, phiTitle='#Delta #phi', phibins=Tile.MAX_DRAWER, phimin=0.0, phimax=6.4) from TileMonitoring.TileMonitoringCfgHelper import addTile1DHistogramsArray # ) Configure histograms with all Tile towers energy per partition addTile1DHistogramsArray( helper, tileClusterMonAlg, name='TileClusterEnergy', xvalue='energy', title='Energy in most energetic Tile Cluster [MeV]', path='Tile/Cluster', xbins=80, xmin=0., xmax=20000., type='TH1D', run=run, triggers=l1Triggers, perPartition=True, perSample=False, perGain=False, subDirectory=True, allPartitions=True) # ) Configure histograms with Et in most energetic Tile tower per partition addTile1DHistogramsArray( helper, tileClusterMonAlg, name='TileClusterEt', xvalue='Et', title='E_{T} [MeV] in most energetic Tile Cluster', path='Tile/Cluster', xbins=80, xmin=0., xmax=20000., type='TH1D', run=run, triggers=l1Triggers, perPartition=False, perSample=False, perGain=False, subDirectory=False, allPartitions=False) # ) Configure histograms with all Tile towers energy per partition addTile1DHistogramsArray( helper, tileClusterMonAlg, name='TileClusterNCells', xvalue='nCells', title='Number of cells in most energetic Tile Cluster', path='Tile/Cluster', xbins=100, xmin=0., xmax=100., type='TH1D', run=run, triggers=l1Triggers, perPartition=False, perSample=False, perGain=False, subDirectory=False, allPartitions=False) # ) Configure histograms with all Tile towers energy per partition addTile1DHistogramsArray(helper, tileClusterMonAlg, name='TileAllClusterEnergy', xvalue='energy', title='All Tile Cluster Energy [MeV]', path='Tile/Cluster', xbins=80, xmin=0., xmax=20000., type='TH1D', run=run, triggers=l1Triggers, perPartition=False, perSample=False, perGain=False, subDirectory=False, allPartitions=False) # ) Configure histograms with all Tile towers energy per partition addTile1DHistogramsArray(helper, tileClusterMonAlg, name='TileNClusters', xvalue='nClusters', title='Number of Tile Clusters', path='Tile/Cluster', xbins=200, xmin=0., xmax=200., type='TH1D', run=run, triggers=l1Triggers, perPartition=False, perSample=False, perGain=False, subDirectory=False, allPartitions=False) # ) Configure histograms with all Tile towers energy per partition addTile1DHistogramsArray(helper, tileClusterMonAlg, name='TileClusterSumPx', xvalue='sumPx', title='Tile Clusters SumPx [MeV]', path='Tile/Cluster', xbins=101, xmin=-10000., xmax=10000., type='TH1D', run=run, triggers=l1Triggers, perPartition=False, perSample=False, perGain=False, subDirectory=False, allPartitions=False) # ) Configure histograms with all Tile towers energy per partition addTile1DHistogramsArray(helper, tileClusterMonAlg, name='TileClusterSumPy', xvalue='sumPy', title='Tile Clusters SumPy [MeV]', path='Tile/Cluster', xbins=101, xmin=-10000., xmax=10000., type='TH1D', run=run, triggers=l1Triggers, perPartition=False, perSample=False, perGain=False, subDirectory=False, allPartitions=False) # ) Configure histograms with all Tile towers energy per partition addTile1DHistogramsArray(helper, tileClusterMonAlg, name='TileClusterSumEt', xvalue='sumEt', title='Tile Clusters SumEt [MeV]', path='Tile/Cluster', xbins=100, xmin=0., xmax=20000., type='TH1D', run=run, triggers=l1Triggers, perPartition=False, perSample=False, perGain=False, subDirectory=False, allPartitions=False) # ) Configure histograms with all Tile towers energy per partition timeDiffTitle = 'Tile time correlation of cluster opposite to most energetic cluster; Time difference [ns]' addTile1DHistogramsArray(helper, tileClusterMonAlg, name='TileClusterTimeDiff', xvalue='timeDiff', title=timeDiffTitle, path='Tile/Cluster', xbins=200, xmin=-100., xmax=100., type='TH1D', run=run, triggers=l1Triggers, perPartition=False, perSample=False, perGain=False, subDirectory=False, allPartitions=False) # ) Configure histograms with all Tile towers energy per partition eneDiffTitle = 'Tile energy correlation of cluster opposite to most energetic cluster; Time energy [MeV]' addTile1DHistogramsArray(helper, tileClusterMonAlg, name='TileClusterEneDiff', xvalue='energyDiff', title=eneDiffTitle, path='Tile/Cluster', xbins=200, xmin=-10000., xmax=10000., type='TH1D', run=run, triggers=l1Triggers, perPartition=False, perSample=False, perGain=False, subDirectory=False, allPartitions=False) if fillTimingHistograms: # ) Configure histograms with Tile partition time vs lumiBlock per partition titlePartitionTime = 'Tile partition time vs luminosity block;LumiBlock;t[ns]' addTile1DHistogramsArray(helper, tileClusterMonAlg, name='TilePartitionTimeLB', xvalue='lumiBlock', value='time', title=titlePartitionTime, path='Tile/Cluster', xbins=1000, xmin=-0.5, xmax=999.5, type='TProfile', run=run, triggers=[], subDirectory=False, perPartition=True, perSample=False, perGain=False, allPartitions=True) accumalator = helper.result() result.merge(accumalator) return result
def TileTowerMonitoringConfig(flags, **kwargs): ''' Function to configure TileTowerMonitorAlgorithm algorithm in the monitoring system.''' # Define one top-level monitoring algorithm. The new configuration # framework uses a component accumulator. result = ComponentAccumulator() from TileMonitoring.TileTowerBuilderConfig import TileTowerBuilderAlgCfg result.merge(TileTowerBuilderAlgCfg(flags)) # The following class will make a sequence, configure algorithms, and link # them to GenericMonitoringTools from AthenaMonitoring import AthMonitorCfgHelper helper = AthMonitorCfgHelper(flags, 'TileTowerMonitoring') # Adding an TileTowerMonitorAlgorithm algorithm to the helper TileTowerMonitorAlgorithm = CompFactory.TileTowerMonitorAlgorithm tileTowerMonAlg = helper.addAlgorithm(TileTowerMonitorAlgorithm, 'TileTowerMonAlg') tileTowerMonAlg.TriggerChain = '' # L1Trigger Type Bits: # bit0_RNDM, bit1_ZeroBias, bit2_L1Cal, bit3_Muon, # bit4_RPC, bit5_FTK, bit6_CTP, bit7_Calib, AnyPhysTrig kwargs.setdefault('fillHistogramsForL1Triggers', ['AnyPhysTrig', 'bit7_Calib']) l1Triggers = kwargs['fillHistogramsForL1Triggers'] for k, v in kwargs.items(): setattr(tileTowerMonAlg, k, v) run = str(flags.Input.RunNumber[0]) # 1) Configure histogram with TileTowerMonAlg algorithm execution time executeTimeGroup = helper.addGroup(tileTowerMonAlg, 'TileTowerMonExecuteTime', 'Tile/') executeTimeGroup.defineHistogram( 'TIME_execute', path='Tower', type='TH1F', title='Time for execute TileTowerMonAlg algorithm;time [#mus]', xbins=100, xmin=0, xmax=100000) from TileCalibBlobObjs.Classes import TileCalibUtils as Tile from TileMonitoring.TileMonitoringCfgHelper import addTileEtaPhiMapsArray # ) Configure histograms with most energetic Tile tower position addTileEtaPhiMapsArray(helper, tileTowerMonAlg, name='TileTowerEtaPhi', type='TH2D', title='Most energetic Tile Tower position', path='Tile/Tower', run=run, triggers=l1Triggers, perSample=False) # ) Configure histograms with position correlation of Tile tower opposite to most energetic tower addTileEtaPhiMapsArray( helper, tileTowerMonAlg, name='TileTowerEtaPhiDiff', type='TH2D', title= 'Position correlation of Tile Tower opposite to most energetic tower', path='Tile/Tower', run=run, triggers=l1Triggers, perSample=False, etaTitle='#Delta #eta', etabins=41, etamin=-2.05, etamax=2.05, phiTitle='#Delta #phi', phibins=Tile.MAX_DRAWER + 1, phimin=-0.05, phimax=6.45) from TileMonitoring.TileMonitoringCfgHelper import addTile1DHistogramsArray # ) Configure histograms with Et in most energetic Tile tower per partition addTile1DHistogramsArray(helper, tileTowerMonAlg, name='TileTowerEt', xvalue='Et', title='E_{T} [MeV] in most energetic Tile Tower', path='Tile/Tower', xbins=80, xmin=0., xmax=20000., type='TH1D', run=run, triggers=l1Triggers, perPartition=True, perSample=False, perGain=False, subDirectory=True, allPartitions=True) # ) Configure histograms with all Tile towers energy per partition addTile1DHistogramsArray(helper, tileTowerMonAlg, name='TileAllTowerEnergy', xvalue='energy', title='All Tile Towers Energy [MeV]', path='Tile/Tower', xbins=80, xmin=0., xmax=20000., type='TH1D', run=run, triggers=l1Triggers, perPartition=True, perSample=False, perGain=False, subDirectory=True, allPartitions=True) accumalator = helper.result() result.merge(accumalator) return result
def InDetGlobalMonitoringRun3TestConfig(flags): from AthenaConfiguration.ComponentAccumulator import ComponentAccumulator acc = ComponentAccumulator() # run on RAW only if flags.DQ.Environment in ('online', 'tier0', 'tier0Raw'): ## from InDetRecExample.InDetKeys import InDetKeys ## not sure it works now ########### here begins InDetGlobalTrackMonAlg ########### kwargsInDetGlobalTrackMonAlg = { 'DoIBL' : True, #InDetFlags.doIBL(), #Turn on/off IBL histograms 'TrackName' : 'CombinedInDetTracks', #Until new config ready 'TrackName2' : 'CombinedInDetTracks', #Until new config ready 'TrackName3' : 'CombinedInDetTracks', #Until new config ready } from AthenaMonitoring import AthMonitorCfgHelper helper = AthMonitorCfgHelper(flags, "InDetGlobalMonitoringRun3Test") from AthenaConfiguration.ComponentFactory import CompFactory # from InDetGlobalMonitoringRun3Test.InDetGlobalMonitoringRun3TestConf import InDetGlobalTrackMonAlg from InDetGlobalMonitoringRun3Test.InDetGlobalTrackMonAlgCfg import InDetGlobalTrackMonAlgCfg inDetGlobalTrackMonAlg = helper.addAlgorithm(CompFactory.InDetGlobalTrackMonAlg, 'InDetGlobalTrackMonAlg') for k, v in kwargsInDetGlobalTrackMonAlg.items(): setattr(inDetGlobalTrackMonAlg, k, v) inDetGlobalTrackMonAlg.TrackSelectionTool.UseTrkTrackTools = True inDetGlobalTrackMonAlg.TrackSelectionTool.CutLevel = "TightPrimary" inDetGlobalTrackMonAlg.TrackSelectionTool.maxNPixelHoles = 1 inDetGlobalTrackMonAlg.TrackSelectionTool.minPt = 5000 # InDetGlobalTrackMonAlg.Baseline_TrackSelectionTool.TrackSummaryTool = InDetTrackSummaryTool # InDetGlobalTrackMonAlg.Baseline_TrackSelectionTool.Extrapolator = InDetExtrapolator # inDetGlobalTrackMonAlg.Tight_TrackSelectionTool.UseTrkTrackTools = True inDetGlobalTrackMonAlg.Tight_TrackSelectionTool.CutLevel = "TightPrimary" inDetGlobalTrackMonAlg.Tight_TrackSelectionTool.minPt = 5000 # InDetGlobalTrackMonAlg.Tight_TrackSelectionTool.TrackSummaryTool = InDetTrackSummaryTool # InDetGlobalTrackMonAlg.Tight_TrackSelectionTool.Extrapolator = InDetExtrapolator # Run 3 configs - stolen from SCT from SCT_Monitoring.TrackSummaryToolWorkaround import TrackSummaryToolWorkaround inDetGlobalTrackMonAlg.TrackSelectionTool.TrackSummaryTool = acc.popToolsAndMerge(TrackSummaryToolWorkaround(flags)) inDetGlobalTrackMonAlg.TrackSelectionTool.Extrapolator = acc.getPublicTool("InDetExtrapolator") inDetGlobalTrackMonAlg.Tight_TrackSelectionTool.TrackSummaryTool = acc.popToolsAndMerge(TrackSummaryToolWorkaround(flags)) inDetGlobalTrackMonAlg.Tight_TrackSelectionTool.Extrapolator = acc.getPublicTool("InDetExtrapolator") InDetGlobalTrackMonAlgCfg(helper, inDetGlobalTrackMonAlg, **kwargsInDetGlobalTrackMonAlg) ########### here ends InDetGlobalTrackMonAlg ########### ########### here begins InDetGlobalPrimaryVertexMonAlg ########### from InDetGlobalMonitoringRun3Test.InDetGlobalMonitoringRun3TestConf import InDetGlobalPrimaryVertexMonAlg from InDetGlobalMonitoringRun3Test.InDetGlobalPrimaryVertexMonAlgCfg import InDetGlobalPrimaryVertexMonAlgCfg myInDetGlobalPrimaryVertexMonAlg = helper.addAlgorithm(InDetGlobalPrimaryVertexMonAlg, 'InDetGlobalPrimaryVertexMonAlg') kwargsInDetGlobalPrimaryVertexMonAlg = { 'vxContainerName' : 'PrimaryVertices', #InDetKeys.xAODVertexContainer(), 'vxContainerNameWithOutBeamConstraint' : 'VxPrimaryCandidateWithBeamConstraint', #InDetKeys.PrimaryVerticesWithoutBeamConstraint(), 'vxContainerNameSplit' : 'VxPrimaryCandidateSplitStream', #InDetKeys.PrimaryVerticesSplitStream(), 'doEnhancedMonitoring' : True # InDetFlags.doMonitoringPrimaryVertexingEnhanced() } for k, v in kwargsInDetGlobalPrimaryVertexMonAlg.items(): setattr(kwargsInDetGlobalPrimaryVertexMonAlg, k, v) InDetGlobalPrimaryVertexMonAlgCfg(helper, myInDetGlobalPrimaryVertexMonAlg, **kwargsInDetGlobalPrimaryVertexMonAlg) ########### here ends InDetGlobalPrimaryVertexMonAlg ########### ########### here begins InDetGlobalBeamSpotMonAlg ########### from InDetGlobalMonitoringRun3Test.InDetGlobalMonitoringRun3TestConf import InDetGlobalBeamSpotMonAlg from InDetGlobalMonitoringRun3Test.InDetGlobalBeamSpotMonAlgCfg import InDetGlobalBeamSpotMonAlgCfg myInDetGlobalBeamSpotMonAlg = helper.addAlgorithm(InDetGlobalBeamSpotMonAlg, 'InDetGlobalBeamSpotMonAlg') kwargsInDetGlobalBeamSpotMonAlg = { 'BeamSpotKey' : 'BeamSpotData', #InDetKeys.BeamSpotData(), 'vxContainerName' : 'PrimaryVertices', #InDetKeys.xAODVertexContainer(), 'trackContainerName' : 'InDetTrackParticles', #InDetKeys.xAODTrackParticleContainer(), 'useBeamspot' : True, # InDetFlags.useBeamConstraint() 'vxContainerWithBeamConstraint' : False # InDetFlags.useBeamConstraint() } for k, v in kwargsInDetGlobalBeamSpotMonAlg.items(): setattr(kwargsInDetGlobalBeamSpotMonAlg, k, v) InDetGlobalBeamSpotMonAlgCfg(helper, myInDetGlobalBeamSpotMonAlg, **kwargsInDetGlobalBeamSpotMonAlg) ########### here ends InDetGlobalBeamSpotMonAlg ########### return acc
def TrigBphysMonConfig(inputFlags): '''Function to configures some algorithms in the monitoring system.''' ### STEP 1 ### # Define one top-level monitoring algorithm. The new configuration # framework uses a component accumulator. #from AthenaConfiguration.ComponentAccumulator import ComponentAccumulator #result = ComponentAccumulator() # The following class will make a sequence, configure algorithms, and link # them to GenericMonitoringTools from AthenaMonitoring import AthMonitorCfgHelper helper = AthMonitorCfgHelper(inputFlags,'TrigBphysAthMonitorCfg') ### STEP 2 ### # Adding an algorithm to the helper. Here, we will use the example # algorithm in the AthenaMonitoring package. Just pass the type to the # helper. Then, the helper will instantiate an instance and set up the # base class configuration following the inputFlags. The returned object # is the algorithm. # The added algorithm must exist as a .h file from AthenaConfiguration.ComponentFactory import CompFactory trigBphysMonAlg = helper.addAlgorithm(CompFactory.TrigBphysMonitorAlgorithm,'TrigBphysMonAlg') #from AthenaCommon.Constants import DEBUG,INFO #trigBphysMonAlg.OutputLevel = INFO # You can actually make multiple instances of the same algorithm and give # them different configurations #shifterTrigBphysMonAlg = helper.addAlgorithm(TrigBphysMonitorAlgorithm,'ShifterTrigBphysMonAlg') # # If for some really obscure reason you need to instantiate an algorithm # # yourself, the AddAlgorithm method will still configure the base # # properties and add the algorithm to the monitoring sequence. # helper.AddAlgorithm(myExistingAlg) ### STEP 3 ### # Edit properties of a algorithm # some generic property # trigBphysMonAlg.RandomHist = True # to enable a trigger filter, for example: #trigBphysMonAlg.TriggerChain = 'HLT_mu26_ivarmedium' #trigBphysMonAlg.TriggerChain = 'HLT_e24_lhtight_nod0' monitored_chains = ['HLT_2mu10_bJpsimumu_L12MU10', 'HLT_2mu10_bUpsimumu_L12MU10'] monitored_containers = ['HLT_DimuEF'] trigBphysMonAlg.MonitoredChains = monitored_chains trigBphysMonAlg.MonitoredContainers = monitored_containers ### STEP 4 ### # Add some tools. N.B. Do not use your own trigger decision tool. Use the # standard one that is included with AthMonitorAlgorithm. # # First, add a tool that's set up by a different configuration function. # # In this case, CaloNoiseToolCfg returns its own component accumulator, # # which must be merged with the one from this function. # from CaloTools.CaloNoiseToolConfig import CaloNoiseToolCfg # caloNoiseAcc, caloNoiseTool = CaloNoiseToolCfg(inputFlags) # result.merge(caloNoiseAcc) # trigBphysMonAlg.CaloNoiseTool = caloNoiseTool # # Then, add a tool that doesn't have its own configuration function. In # # this example, no accumulator is returned, so no merge is necessary. # from MyDomainPackage.MyDomainPackageConf import MyDomainTool # trigBphysMonAlg.MyDomainTool = MyDomainTool() # Add a generic monitoring tool (a "group" in old language). The returned # object here is the standard GenericMonitoringTool. expertGroup = helper.addGroup( trigBphysMonAlg, 'TrigBphysMonitor', 'HLT/BphysMon/Expert/' ) # Add a GMT for the other example monitor algorithm #shifterGroup = helper.addGroup(shifterTrigBphysMonAlg,'TrigBphysMonitor','HLT/BphysMon/Shifter/') ### STEP 5 ### # Configure histograms #NB! The histograms defined here must match the ones in the cxx file exactly for monitored_chain in monitored_chains : # number of events histograms will be shown in root Containers/ folder expertGroup.defineHistogram('ncandidates_Chain_'+monitored_chain,title='Number of Bphys candidates;number of candidates;Entries', path='Chains',xbins=10,xmin=-0.5,xmax=9.5) # the others in per-container folders expertGroup.defineHistogram('dimu_mass_Chain_'+monitored_chain,title='Dimuon mass;m(#mu^{+}#mu^{-}) [GeV];Events / (0.1 GeV)', path='Chains/'+monitored_chain,xbins=150,xmin=0.0,xmax=15.0) expertGroup.defineHistogram('dimu_pt_Chain_'+monitored_chain,title='Dimuon transverse momentum;p_{T}(#mu^{+}#mu^{-}) [GeV];Events / (1 GeV)', path='Chains/'+monitored_chain,xbins=40,xmin=0.0,xmax=40.0) expertGroup.defineHistogram('dimu_chi2_Chain_'+monitored_chain,title='Dimuon #chi^{2};#chi^{2}(#mu^{+}#mu^{-});Events / (0.5)', path='Chains/'+monitored_chain,xbins=80,xmin=0.0,xmax=40.0) for monitored_container in monitored_containers : # number of events histograms will be shown in root Containers/ folder expertGroup.defineHistogram('ncandidates_Container_'+monitored_container,title='Number of Bphys candidates;number of candidates;Entries', path='Containers',xbins=10,xmin=-0.5,xmax=9.5) # the others in per-container folders expertGroup.defineHistogram('dimu_mass_Container_'+monitored_container,title='Dimuon mass;m(#mu^{+}#mu^{-}) [GeV];Events / (0.1 GeV)', path='Containers/'+monitored_container,xbins=150,xmin=0.0,xmax=15.0) #shifterGroup.defineHistogram('run',title='Run Number;run;Events', #path='SomePath',xbins=1000000,xmin=-0.5,xmax=999999.5) ### STEP 6 ### # Finalize. The return value should be a tuple of the ComponentAccumulator # and the sequence containing the created algorithms. If we haven't called # any configuration other than the AthMonitorCfgHelper here, then we can # just return directly (and not create "result" above) return helper.result()
def CaloBaselineMonConfig(inputFlags, isTopLevel=True): from AthenaMonitoring import AthMonitorCfgHelper helper = AthMonitorCfgHelper(inputFlags,'CaloBaselineMonCfg') if not inputFlags.DQ.enableLumiAccess: print('This algo needs Lumi access, returning empty config') if isTopLevel: from AthenaConfiguration.ComponentAccumulator import ComponentAccumulator cfg=ComponentAccumulator() cfg.merge(helper.result()) return cfg else: return helper.result() from LArGeoAlgsNV.LArGMConfig import LArGMCfg cfg = LArGMCfg(inputFlags) from TileGeoModel.TileGMConfig import TileGMCfg cfg.merge(TileGMCfg(inputFlags)) from LArCellRec.LArCollisionTimeConfig import LArCollisionTimeCfg cfg.merge(LArCollisionTimeCfg(inputFlags)) from CaloTools.CaloNoiseCondAlgConfig import CaloNoiseCondAlgCfg cfg.merge(CaloNoiseCondAlgCfg(inputFlags)) caloBaselineMonAlg = helper.addAlgorithm(CompFactory.CaloBaselineMonAlg,'caloBaselineMonAlg') GroupName="CaloBaseLineMon" caloBaselineMonAlg.MonGroupName = GroupName caloBaselineMonAlg.EnableLumi = True partList = ["EM","HEC+FCal"] caloBaselineMonAlg.partionList = partList etaBins = [16,19] caloBaselineMonAlg.nbOfEtaBins = etaBins minEta = [0.,1.2] caloBaselineMonAlg.minimumEta = minEta maxEta = [3.2,5.] caloBaselineMonAlg.maximumEta = maxEta # config settings based on flags tmp_CaloBaselineMon = {"useBadLBTool":False, "useReadyFilterTool":False, "useLArNoisyAlg":False, "useBeamBackgroundRemoval":False, "useLArCollisionFilter":False, "pedestalMon_BCIDmin":0, "bcidtoolMon_BCIDmax":0} binlabels=["TotalEvents","ATLAS Ready","with Good LAr LB","with No LAr Collision","with No Beam Background", "with No Trigger Filter","with No LArError"] if not (inputFlags.Common.isOnline == 'online' or inputFlags.Input.isMC ): tmp_CaloBaselineMon["useBadLBTool"]=True tmp_CaloBaselineMon["useReadyFilterTool"]=True tmp_CaloBaselineMon["useLArNoisyAlg"] = True # FIXME when trigger stream flag is added: #if rec.triggerStream()=='CosmicCalo': # tmp_CaloBaselineMon["useLArCollisionFilter"] = True # tmp_CaloBaselineMon["pedestalMon_BCIDmin"] = 40 # tmp_CaloBaselineMon["TriggerChain"] = "HLT_noalg_cosmiccalo_L1RD1_EMPTY" #if rec.triggerStream()=='ZeroBias': tmp_CaloBaselineMon["bcidtoolMon_BCIDmax"] = 144 #tmp_CaloBaselineMon["TriggerChain"] = "HLT_noalg_zb_L1ZB" tmp_CaloBaselineMon["TriggerChain"] = "" from AthenaMonitoring.AtlasReadyFilterConfig import AtlasReadyFilterCfg from AthenaMonitoring.BadLBFilterToolConfig import LArBadLBFilterToolCfg caloBaselineMonAlg.useBadLBTool = tmp_CaloBaselineMon["useBadLBTool"] caloBaselineMonAlg.BadLBTool = cfg.popToolsAndMerge(LArBadLBFilterToolCfg(inputFlags)) # FIXME Do not have yet new config for BunchCrossingTool, shoulkd be put back once available #caloBaselineMonAlg.BunchCrossingTool = BunchCrossingTool("TrigConf" if not inputFlags.Input.isMC else "MC") caloBaselineMonAlg.useReadyFilterTool = tmp_CaloBaselineMon["useReadyFilterTool"] caloBaselineMonAlg.ReadyFilterTool = cfg.popToolsAndMerge(AtlasReadyFilterCfg(inputFlags)) caloBaselineMonAlg.useLArCollisionFilterTool = tmp_CaloBaselineMon["useLArCollisionFilter"] caloBaselineMonAlg.useLArNoisyAlg = tmp_CaloBaselineMon["useLArNoisyAlg"] caloBaselineMonAlg.useBeamBackgroundRemoval = tmp_CaloBaselineMon["useBeamBackgroundRemoval"] caloBaselineMonAlg.pedestalMon_BCIDmin = tmp_CaloBaselineMon["pedestalMon_BCIDmin"] caloBaselineMonAlg.bcidtoolMon_BCIDmax = tmp_CaloBaselineMon["bcidtoolMon_BCIDmax"] caloBaselineMonAlg.TriggerChain = tmp_CaloBaselineMon["TriggerChain"] if not caloBaselineMonAlg.useReadyFilterTool: binlabels[1] = "ATLAS Ready-OFF" if not caloBaselineMonAlg.useBadLBTool: binlabels[2] = "Good LAr LB-OFF" if not caloBaselineMonAlg.useLArCollisionFilterTool: binlabels[3] = "LAr collision-OFF" if not caloBaselineMonAlg.useBeamBackgroundRemoval: binlabels[4] = "Beam backgr.-OFF" if not caloBaselineMonAlg.useLArNoisyAlg: binlabels[5] = "LAr Error Veto-OFF" # eta bins computation (should be tha same as in C++ code etaBinWidth = [None] * len(partList) for i in range(0,len(partList)): etaBinWidth[i] = (maxEta[i] - minEta[i]) / etaBins[i] # bool to decide which monitoring to do if caloBaselineMonAlg.pedestalMon_BCIDmin > 0: doPedestalMon = True else: doPedestalMon = False if caloBaselineMonAlg.bcidtoolMon_BCIDmax > 0: doBcidtoolMon = True else: doBcidtoolMon = False baselineGroup = helper.addGroup( caloBaselineMonAlg, GroupName, '/CaloMonitoring/'+GroupName+'/' ) gen_hist_path='General/' from CaloMonitoring.CaloMonAlgBase import CaloBaseHistConfig CaloBaseHistConfig(baselineGroup,gen_hist_path,binlabels) BCID0_nbins=3563 LB_nbins=3000 baselineGroup.defineHistogram('BCID;h1BCID_pedestalMon', title='BCID used for baseline monitoring;BCID;Nb of events / BCID', type='TH1I', path=gen_hist_path, xbins=BCID0_nbins+1, xmin=-0.5, xmax=BCID0_nbins+0.5) baselineGroup.defineHistogram('BCID;h1BCID_BCIDToolMon', title='BCID used for BCIDTool monitoring;BCID;Nb of events / BCID', type='TH1I', path=gen_hist_path, xbins=BCID0_nbins+1, xmin=-0.5, xmax=BCID0_nbins+0.5) part_hist_path='AllCalo'+tmp_CaloBaselineMon["TriggerChain"]+'/' idx=0 for part in partList: if doPedestalMon: str_auxTitle = " Empty BCID > "+str(tmp_CaloBaselineMon["pedestalMon_BCIDmin"])+"BCID away from last train" baselineGroup.defineHistogram('pedEta_'+part+',sumPedEta_'+part+';hprof1d_pedestalMon_'+part+'_AllEta', title='Pedestal baseline ( '+str_auxTitle+');Eta;E_T/(#Delta#eta.#Delta#phi.#mu)[MeV]', type='TProfile', path=part_hist_path, xbins=etaBins[idx], xmin=minEta[idx], xmax=maxEta[idx]) baselineGroup.defineHistogram('LB_'+part+',sumPedEta_'+part+';hprof1d_pedestalMon_'+part+'_LB', title='Pedestal baseline ( '+str_auxTitle+');Luminosity block;E_T/(#Delta#eta.#Delta#phi.#mu)[MeV]', type='TProfile', path=part_hist_path, xbins=LB_nbins, xmin=0, xmax=LB_nbins) if doBcidtoolMon: str_auxTitle = " BCID in bunch train " baselineGroup.defineHistogram('bcidEta_'+part+',sumBCIDEta_'+part+';hprof1d_bcidtoolMon_'+part+'_AllEta', title='BCIDTool baseline ( '+str_auxTitle+');Eta;E_T/(#Delta#eta.#Delta#phi.#mu)[MeV]', type='TProfile', path=part_hist_path, xbins=etaBins[idx], xmin=minEta[idx], xmax=maxEta[idx]) baselineGroup.defineHistogram('LB_'+part+',sumBCIDEta_'+part+';hprof1d_bcidtoolMon_'+part+'_LB', title='BCIDTool baseline ( '+str_auxTitle+');Luminosity block;E_T/(#Delta#eta.#Delta#phi.#mu)[MeV]', type='TProfile', path=part_hist_path, xbins=LB_nbins, xmin=0, xmax=LB_nbins) part_hist_path='/CaloMonitoring/'+GroupName+'/AllCalo'+tmp_CaloBaselineMon["TriggerChain"]+'/' idx=0 for part in partList: darray = helper.addArray([etaBins[idx]],caloBaselineMonAlg,part) if doPedestalMon: str_auxTitle = " Empty BCID > "+str(tmp_CaloBaselineMon["pedestalMon_BCIDmin"])+"BCID away from last train" darray.defineHistogram('etaBCID_'+part+',sumPedEta_'+part+';hprof_pedestalMon_'+part, title='Pedestal baseline ( '+str_auxTitle+');Luminosity block;E_T/(#Delta#eta.#Delta#phi.#mu)[MeV]', type='TProfile', path=part_hist_path, xbins=BCID0_nbins+1, xmin=-0.5, xmax=BCID0_nbins+0.5) if doBcidtoolMon: str_auxTitle = " BCID in bunch train " darray.defineHistogram('etaBCID_'+part+',sumBCIDEta_'+part+';hprof_bcidtoolMon_'+part, title='BCIDTool baseline ( '+str_auxTitle+');Luminosity block;E_T/(#Delta#eta.#Delta#phi.#mu)[MeV]', type='TProfile', path=part_hist_path, xbins=BCID0_nbins+1, xmin=-0.5, xmax=BCID0_nbins+0.5) idx=idx+1 #if isTopLevel: cfg.merge(helper.result()) return cfg
def TileCalCellMonAlgConfig(inputFlags, **kwargs): ''' Function to configure TileCalCellMonAlg algorithm in the monitoring system.''' kwargs.setdefault('MonGroupName', 'TileEventFiter') kwargs.setdefault('useBeamBackgroundRemoval', False) kwargs.setdefault('useLArNoisyAlg', False) kwargs.setdefault('useLArCollisionFilterTool', False) if not (inputFlags.Common.isOnline == 'online' or inputFlags.Input.isMC): kwargs.setdefault('useReadyFilterTool', True) kwargs.setdefault( 'useBadLBTool', False) # FIXME: when new LArBadLBFilterTool config is ready else: kwargs.setdefault('useReadyFilterTool', False) kwargs.setdefault('useBadLBTool', False) from AthenaCommon.SystemOfUnits import MeV kwargs.setdefault('EnergyThreshold', 300.0 * MeV) from AthenaMonitoring import AthMonitorCfgHelper helper = AthMonitorCfgHelper(inputFlags, 'TileCalMonCfg') from LArGeoAlgsNV.LArGMConfig import LArGMCfg cfg = LArGMCfg(inputFlags) from TileGeoModel.TileGMConfig import TileGMCfg cfg.merge(TileGMCfg(inputFlags)) from CaloTools.CaloNoiseCondAlgConfig import CaloNoiseCondAlgCfg cfg.merge(CaloNoiseCondAlgCfg(inputFlags)) if kwargs['useLArCollisionFilterTool']: from LArCellRec.LArCollisionTimeConfig import LArCollisionTimeCfg cfg.merge(LArCollisionTimeCfg(inputFlags)) if kwargs['useReadyFilterTool'] and 'ReadyFilterTool' not in kwargs: from AthenaMonitoring.AtlasReadyFilterConfig import AtlasReadyFilterCfg readyFilterTool = cfg.popToolsAndMerge(AtlasReadyFilterCfg(inputFlags)) kwargs['ReadyFilterTool'] = readyFilterTool from AthenaConfiguration.ComponentFactory import CompFactory tileCalCellMonAlg = helper.addAlgorithm(CompFactory.TileCalCellMonAlg, 'TileCalCellMonAlg') for k, v in kwargs.items(): setattr(tileCalCellMonAlg, k, v) binLabels = [ "TotalEvents", "ATLAS Ready", "with Good LAr LB", "with No LAr Collision", "with No Beam Background", "with No Trigger Filter", "with No LArError" ] if not tileCalCellMonAlg.useReadyFilterTool: binLabels[1] = "ATLAS Ready-OFF" if not tileCalCellMonAlg.useBadLBTool: binLabels[2] = "Good LAr LB-OFF" if not tileCalCellMonAlg.useLArCollisionFilterTool: binLabels[3] = "LAr collision-OFF" if not tileCalCellMonAlg.useBeamBackgroundRemoval: binLabels[4] = "Beam backgr.-OFF" if not tileCalCellMonAlg.useLArNoisyAlg: binLabels[5] = "LAr Error Veto-OFF" topPath = '/CaloMonitoring/TileCellMon_NoTrigSel/General/' tileFilterGroup = helper.addGroup(tileCalCellMonAlg, tileCalCellMonAlg.MonGroupName, topPath) from CaloMonitoring.CaloMonAlgBase import CaloBaseHistConfig CaloBaseHistConfig(tileFilterGroup, 'Summary/', binLabels) # 1) Configure histogram with TileCalCellMonAlg algorithm execution time executeTimeGroup = helper.addGroup(tileCalCellMonAlg, 'TileCalCellMonExecuteTime', topPath) executeTimeGroup.defineHistogram( 'TIME_execute', path='Summary', type='TH1F', title='Time for execute TileCalCellMonAlg algorithm;time [#mus]', xbins=100, xmin=0, xmax=100000) # 2) Configure histograms with occupancy maps over threshold (4 noise sigma) per Tile sample samplesWithoutE = ['A', 'BC', 'D', ''] noiseEtaPhiArray = helper.addArray([len(samplesWithoutE)], tileCalCellMonAlg, 'CellsNoiseXEtaVSPhi', topPath=topPath) for postfix, tool in noiseEtaPhiArray.Tools.items(): sample = samplesWithoutE[int(postfix.split('_')[1])] title = ('Number of Tile Cells %s' % sample) + ' with E > 4 sigma (DB);#eta;#phi' name = 'eta,phi;CellsNoiseXEtaVSPhi' + (sample + 'cells' if sample else '') tool.defineHistogram(name, title=title, type='TH2F', xbins=17, xmin=-1.7, xmax=1.7, ybins=64, ymin=-3.14, ymax=3.14) # 3) Configure histogram with number of 4 sigma seeds per Tile hash ID noiseHashGroup = helper.addGroup(tileCalCellMonAlg, 'CellsXNoiseXHash', topPath) noiseHashGroup.defineHistogram( 'hash;CellsXNoiseXHash', path='', type='TH1F', title='Number of 4 sigma seeds per hash;Tile Cell Hash ID;Events', xbins=5184, xmin=-0.5, xmax=5183.5) # 4) Configure histogram with Tile cell energy/noise (DB) ratio noiseHashGroup = helper.addGroup(tileCalCellMonAlg, 'CellsNoiseTile', topPath) noiseHashGroup.defineHistogram( 'noise;CellsNoiseTile', path='', type='TH1F', title='Energy/Noise (DB) of TileCal;Cell Energy / sigma (DB);Events', xbins=200, xmin=-10.0, xmax=10.0) # 5) Configure histogram with mean Tile cell noise (DB) vs eta noiseEtaGroup = helper.addGroup(tileCalCellMonAlg, 'CellsNoiseXEta', topPath) noiseEtaGroup.defineHistogram( 'eta,noise;CellsNoiseXEta', path='', type='TProfile', title= 'Tile Cell noise #sigma (DB) vs #eta;#eta;Mean Cell noise (DB) [MeV]', xbins=17, xmin=-1.7, xmax=1.7) # 6) Configure histogram with mean Tile cell noise (DB) vs phi noisePhiGroup = helper.addGroup(tileCalCellMonAlg, 'CellsNoiseXPhi', topPath) noisePhiGroup.defineHistogram( 'phi,noise;CellsNoiseXPhi', path='', type='TProfile', title= 'Tile Cell noise #sigma (DB) vs #phi;#phi;Mean Cell noise (DB) [MeV]', xbins=64, xmin=-3.14, xmax=3.14) # 7) Configure histogram with number of Tile cell over threshold nCellsGroup = helper.addGroup(tileCalCellMonAlg, 'CellsXN', topPath) nCellsGroup.defineHistogram( 'nCells;CellsXN', path='', type='TH1F', title= 'Number of Tile Cells over threshold;Number of Tile Cells; Events', xbins=250, xmin=0, xmax=500) # 8) Configure histogram with Tile cell energy in GeV energyGroup = helper.addGroup(tileCalCellMonAlg, 'CellsXE', topPath) energyGroup.defineHistogram( 'energy;CellsXE', path='', type='TH1F', title='Energy of Tile Cells;Tile Cell Energy [GeV]; Events', xbins=50, xmin=0, xmax=20) # 9) Configure histogram with mean Tile cell energy in GeV vs eta energyEtaGroup = helper.addGroup(tileCalCellMonAlg, 'CellsXEta', topPath) energyEtaGroup.defineHistogram( 'eta,energy;CellsXEta', path='', type='TProfile', title='Tile Cell Energy vs #eta;#eta;Mean Cell Energy [GeV]', xbins=17, xmin=-1.7, xmax=1.7) # 10) Configure histogram with mean Tile cell energy in GeV vs phi energyPhiGroup = helper.addGroup(tileCalCellMonAlg, 'CellsXPhi', topPath) energyPhiGroup.defineHistogram( 'phi,energy;CellsXPhi', path='', type='TProfile', title='Tile Cell Energy vs #phi;#phi;Mean Cell Energy [GeV]', xbins=64, xmin=-3.14, xmax=3.14) # 11) Configure histogram with mean Tile cell energy in GeV vs tower energyTowerGroup = helper.addGroup(tileCalCellMonAlg, 'CellsXTower', topPath) energyTowerGroup.defineHistogram( 'tower,energy;CellsXTower', path='', type='TProfile', title='Tile Cell Energy vs tower;Tower;Mean Cell Energy [GeV]', xbins=18, xmin=0, xmax=18) # 12) Configure histogram with occupancy map over threshold vs eta and phi occupEtaPhiGroup = helper.addGroup(tileCalCellMonAlg, 'CellsXEtaVSPhi', topPath) occupEtaPhiTitle = ( 'Number of Tile Cell above threshold %s MeV;#eta;#phi' % kwargs['EnergyThreshold']) occupEtaPhiGroup.defineHistogram('eta,phi;CellsXEtaVSPhi', path='', type='TH2F', title=occupEtaPhiTitle, xbins=17, xmin=-1.7, xmax=1.7, ybins=64, ymin=-3.14, ymax=3.14) # 13) Configure histograms with mean Tile cell energy vs module per sample samples = ['A', 'BC', 'D', 'E'] energyModuleArray = helper.addArray([len(samples)], tileCalCellMonAlg, 'CellsXModule', topPath=topPath) for postfix, tool in energyModuleArray.Tools.items(): sampleIdx = int(postfix.split('_')[1]) sample = samples[sampleIdx] title = ('Tile Sampling %s' % sample) + ';Module;Mean Cell Energy [GeV]' name = 'module,energy;CellsXModuleS' + str(sampleIdx + 1) tool.defineHistogram(name, title=title, type='TProfile', xbins=64, xmin=1, xmax=65) accumalator = helper.result() cfg.merge(accumalator) return cfg
def TileCellMonitoringConfig(flags, **kwargs): ''' Function to configure TileCellMonitorAlgorithm algorithm in the monitoring system.''' # Define one top-level monitoring algorithm. The new configuration # framework uses a component accumulator. from AthenaConfiguration.ComponentAccumulator import ComponentAccumulator result = ComponentAccumulator() from TileRecUtils.TileDQstatusConfig import TileDQstatusAlgCfg result.merge(TileDQstatusAlgCfg(flags)) from TileGeoModel.TileGMConfig import TileGMCfg result.merge(TileGMCfg(flags)) from LArGeoAlgsNV.LArGMConfig import LArGMCfg result.merge(LArGMCfg(flags)) from TileConditions.TileCablingSvcConfig import TileCablingSvcCfg result.merge(TileCablingSvcCfg(flags)) # The following class will make a sequence, configure algorithms, and link # them to GenericMonitoringTools from AthenaMonitoring import AthMonitorCfgHelper helper = AthMonitorCfgHelper(flags, 'TileMonitoring') # Adding an TileCellMonitorAlgorithm algorithm to the helper from AthenaConfiguration.ComponentFactory import CompFactory tileCellMonAlg = helper.addAlgorithm(CompFactory.TileCellMonitorAlgorithm, 'TileCellMonAlg') tileCellMonAlg.TriggerChain = '' from AthenaCommon.SystemOfUnits import MeV, GeV, ns kwargs.setdefault('EnergyThreshold', 300.0 * MeV) kwargs.setdefault('NegativeEnergyThreshold', -2000.0 * MeV) kwargs.setdefault('EnergyBalanceThreshold', 3) kwargs.setdefault('TimeBalanceThreshold', 25 * ns) kwargs.setdefault('fillTimeAndEnergyDiffHistograms', False) if flags.Beam.Type in ('cosmics', 'singlebeam'): kwargs.setdefault('fillTimeHistograms', True) kwargs.setdefault('EnergyThresholdForTime', 150.0 * MeV) else: kwargs.setdefault('fillTimeHistograms', False) kwargs.setdefault('EnergyThresholdForTime', 500.0 * MeV) # L1Trigger Type Bits: # bit0_RNDM, bit1_ZeroBias, bit2_L1Cal, bit3_Muon, # bit4_RPC, bit5_FTK, bit6_CTP, bit7_Calib, AnyPhysTrig kwargs.setdefault('fillHistogramsForL1Triggers', ['AnyPhysTrig', 'bit7_Calib']) l1Triggers = kwargs['fillHistogramsForL1Triggers'] for k, v in kwargs.items(): setattr(tileCellMonAlg, k, v) run = str(flags.Input.RunNumber[0]) # 1) Configure histogram with TileCellMonAlg algorithm execution time executeTimeGroup = helper.addGroup(tileCellMonAlg, 'TileCellMonExecuteTime', 'Tile/') executeTimeGroup.defineHistogram( 'TIME_execute', path='Cell', type='TH1F', title='Time for execute TileCellMonAlg algorithm;time [#mus]', xbins=100, xmin=0, xmax=100000) from TileCalibBlobObjs.Classes import TileCalibUtils as Tile from TileMonitoring.TileMonitoringCfgHelper import getPartitionName # 2) Configure histogram with average number of Tile bad cells in partition labelsPartitions = [ getPartitionName(ros) for ros in range(1, Tile.MAX_ROS) ] badCellGroup = helper.addGroup(tileCellMonAlg, 'TileBadCell', 'Tile/') badCellGroup.defineHistogram( 'Partition,nBadCells;TileBadCell', path='Cell', type='TProfile', xlabels=labelsPartitions, title=('Run %s: Average number of Bad Tile Cells' % run), xbins=Tile.MAX_ROS - 1, xmin=-0.5, xmax=Tile.MAX_ROS - 1.5) from TileMonitoring.TileMonitoringCfgHelper import addTileModulePartitionMapsArray # 3) Configure histograms with energy ratio > threshold vs module and partion eneBalModPartTitle = ('Tile Cell Energy Ratio > %s' % kwargs['EnergyBalanceThreshold']) addTileModulePartitionMapsArray(helper, tileCellMonAlg, name='TileCellEneBalModPart', title=eneBalModPartTitle, path='Tile/Cell', type='TH2D', run=run, triggers=l1Triggers, separator='_') # 4) Configure histograms with Tile cell time difference over threshold vs module and partition timeBalModPartTitle = ( 'Tile Cell Time difference > %s ns. E_{ch} > %s [MeV]') timeBalModPartTitle = ( timeBalModPartTitle % (kwargs['TimeBalanceThreshold'], kwargs['EnergyThresholdForTime'])) addTileModulePartitionMapsArray(helper, tileCellMonAlg, name='TileCellTimeBalModPart', title=timeBalModPartTitle, path='Tile/Cell', type='TH2D', run=run, triggers=l1Triggers, separator='_') from TileMonitoring.TileMonitoringCfgHelper import addTileModuleChannelMapsArray, addTileModuleDigitizerMapsArray # 5) Configure histograms with everagy Tile channel time per partition chanTimeTitle = ('TileCal Average Channel Time [ns]. E_{ch} > %s MeV' % kwargs['EnergyThresholdForTime']) addTileModuleChannelMapsArray(helper, tileCellMonAlg, name='TileChanPartTime', type='TProfile2D', value='time', title=chanTimeTitle, path='Tile/Cell', subDirectory=True, run=run, triggers=l1Triggers, separator='_') # 6) Configure histograms with everagy Tile digitizer time per partition digiTimeTitle = ('TileCal Average Digitizer Time [ns]. E_{ch} > %s MeV' % kwargs['EnergyThresholdForTime']) addTileModuleDigitizerMapsArray(helper, tileCellMonAlg, name='TileDigiPartTime', type='TProfile2D', value='time', title=digiTimeTitle, path='Tile/Cell', subDirectory=True, run=run, triggers=l1Triggers, separator='_') # 7) Configure histograms with everagy energy maps per partition addTileModuleChannelMapsArray(helper, tileCellMonAlg, name='TileCellDetailOccMap', type='TProfile2D', value='energy', title='Occupancy Map [MeV]', path='Tile/Cell', subDirectory=True, run=run, triggers=l1Triggers, separator='_') # 8) Configure histograms with occupancy maps over threshold per partition titleMapOvThr = ('Occupancy Map Over Threshod %s MeV' % kwargs['EnergyThreshold']) addTileModuleChannelMapsArray(helper, tileCellMonAlg, name='TileCellDetailOccMapOvThr', weight='weight', title=titleMapOvThr, path='Tile/Cell', subDirectory=True, run=run, triggers=l1Triggers, separator='_') # 9) Configure histograms with occupancy maps over threshold 30GeV per partition addTileModuleChannelMapsArray(helper, tileCellMonAlg, name='TileCellDetailOccMapOvThr30GeV', title='Occupancy Map Over Threshod 30 GeV', path='Tile/Cell', subDirectory=True, run=run, triggers=l1Triggers, separator='_') # 10) Configure histograms with occupancy maps over threshold 300GeV per partition addTileModuleChannelMapsArray(helper, tileCellMonAlg, name='TileCellDetailOccMapOvThr300GeV', title='Occupancy Map Over Threshod 300 GeV', path='Tile/Cell', subDirectory=True, run=run, triggers=l1Triggers, separator='_') # 11) Configure histograms with occupancy maps over threshold per partition addTileModuleChannelMapsArray(helper, tileCellMonAlg, name='TileCellDetailOccMapOvThrGain', weight='weight', title=titleMapOvThr, path='Tile/Cell', subDirectory=True, run=run, triggers=l1Triggers, perGain=True, separator='_') # 12) Configure histograms with status of Tile channels in DB per partition addTileModuleChannelMapsArray(helper, tileCellMonAlg, name='TileCellStatusInDB', title='Cell channel status in DB', path='Tile/Cell', run=run, perGain=True, separator='_') # 13) Configure histograms with Tile channels masked on the fly per partition addTileModuleChannelMapsArray(helper, tileCellMonAlg, name='TileCellStatusOnFly', title='Channels masked on the fly', path='Tile/Cell', run=run, perGain=False, separator='_') # 14) Configure histograms with occupancy map below negative threshold per partition titleNegOcc = 'Occupancy Map Below %s GeV' % ( kwargs['NegativeEnergyThreshold'] / GeV) addTileModuleChannelMapsArray(helper, tileCellMonAlg, name='TileCellDetailNegOccMap', title=titleNegOcc, path='Tile/Cell', run=run, separator='_') # 15) Configure histograms with Tile module correlation per partition from TileMonitoring.TileMonitoringCfgHelper import addTileModuleCorrelionMapsArray addTileModuleCorrelionMapsArray(helper, tileCellMonAlg, name='TileCellModuleCorrelation', title='Tile Cell Module correlation', path='Tile/Cell', weight='weight', subDirectory=True, run=run, triggers=l1Triggers, allPartitions=True, separator='_') from TileMonitoring.TileMonitoringCfgHelper import addTile1DHistogramsArray # 16) Configure histograms with number of masked Tile channels on the fly vs lumi block per partition titleMaskOnFlyLB = 'Number of masked channels on the fly' titleMaskOnFlyLB += ';LumiBlock;Number of masked channels' addTile1DHistogramsArray(helper, tileCellMonAlg, name='TileMaskChannelOnFlyLB', path='Tile/Cell', xvalue='lumiBlock', value='nMaskedChannelsOnFly', title=titleMaskOnFlyLB, xbins=1000, xmin=-0.5, xmax=999.5, type='TProfile', run=run, triggers=[], perPartition=True, perSample=False, perGain=False, subDirectory=False, opt='kAddBinsDynamically') # 17) Configure histograms with number of masked Tile cells on the fly vs lumi block per partition titleMaskCellLB = 'Number of masked cells on the fly' titleMaskCellLB += ';LumiBlock;Number of masked cells' addTile1DHistogramsArray(helper, tileCellMonAlg, name='TileMaskCellLB', path='Tile/Cell', xvalue='lumiBlock', value='nMaskedCells', title=titleMaskCellLB, xbins=1000, xmin=-0.5, xmax=999.5, type='TProfile', run=run, triggers=[], subDirectory=False, perPartition=True, perSample=False, perGain=False, opt='kAddBinsDynamically') # 18) Configure histograms with number of masked Tile channels on the fly due to bad DQ status vs lumi block per partition titleMaskDueDQ = 'Number of masked channels on the fly due to bad DQ status' titleMaskDueDQ += ';LumiBlock;Number of masked channels' addTile1DHistogramsArray(helper, tileCellMonAlg, name='TileMaskChannelDueDQvsLB', path='Tile/Cell', xvalue='lumiBlock', value='nMaskedChannelsDueDQ', title=titleMaskDueDQ, xbins=1000, xmin=-0.5, xmax=999.5, type='TProfile', run=run, triggers=[], subDirectory=False, perPartition=True, perSample=False, perGain=False, opt='kAddBinsDynamically') # 19) Configure histograms with number of masked Tile cells on the fly due to bad DQ status vs lumi block per partition titleMaskCellDueDQ = 'Number of masked cells on the fly due to bad DQ status' titleMaskCellDueDQ += ';LumiBlock;Number of masked cells' addTile1DHistogramsArray(helper, tileCellMonAlg, name='TileMaskedCellDueDQvsLB', path='Tile/Cell', xvalue='lumiBlock', value='nMaskedCellsDueDQ', title=titleMaskCellDueDQ, xbins=1000, xmin=-0.5, xmax=999.5, type='TProfile', run=run, triggers=[], subDirectory=False, perPartition=True, perSample=False, perGain=False, opt='kAddBinsDynamically') # 20) Configure histograms with energy difference between Tile cells' PMTs per partition and sample addTile1DHistogramsArray( helper, tileCellMonAlg, name='TileCellEneDiff', xvalue='energyDiff', title='Energy difference [MeV] between PMTs;Energy difference [MeV]', path='Tile/Cell', xbins=50, xmin=-1000., xmax=1000., type='TH1D', run=run, triggers=l1Triggers, subDirectory=True, perPartition=True, perSample=True, perGain=False) # 21) Configure histograms with time difference between Tile cells' PMTs per partition and sample titleTimeDiffSamp = 'Time difference [ns] between PMTs with ' titleTimeDiffSamp += 'E_{ch} > %s MeV' % ( kwargs['EnergyThresholdForTime'] / MeV) titleTimeDiffSamp += ';time [ns]' addTile1DHistogramsArray(helper, tileCellMonAlg, name='TileCellTimeDiff', xvalue='timeDiff', title=titleTimeDiffSamp, path='Tile/Cell', xbins=50, xmin=-10., xmax=10., type='TH1D', run=run, triggers=l1Triggers, subDirectory=True, perPartition=True, perSample=True, perGain=False) # Configure histograms with number of Tile cells vs lumiBlock per partition titleCellsNumber = 'Tile Cells number per luminosity block;LumiBlock;Number of reconstructed cells' addTile1DHistogramsArray(helper, tileCellMonAlg, name='TileCellsNumberLB', xvalue='lumiBlock', value='nCells', title=titleCellsNumber, path='Tile/Cell', xbins=1000, xmin=-0.5, xmax=999.5, type='TProfile', run=run, triggers=l1Triggers, subDirectory=True, perPartition=True, perSample=False, perGain=False, allPartitions=True) # 22) Configure histograms with number of Tile cells over threshold vs BCID per partition titleCellsOvThrBCID = 'Tile Cell Occupancy over Threshold %s MeV' % ( kwargs['EnergyThresholdForTime'] / MeV) titleCellsOvThrBCID += ';BCID;Average number of cells over threshold' addTile1DHistogramsArray(helper, tileCellMonAlg, name='TileCellOccOvThrBCID', xvalue='BCID', value='nCells', title=titleCellsOvThrBCID, path='Tile/Cell', xbins=3565, xmin=0., xmax=3565., type='TProfile', run=run, triggers=l1Triggers, subDirectory=True, perPartition=True, perSample=False, perGain=False, allPartitions=True) # 23) Configure histograms with number of Tile E cell's energy per partition titleEvEnergy = 'Tile Event SampE Energy;Event Energy [MeV]' addTile1DHistogramsArray(helper, tileCellMonAlg, name='TileCellEventEnergySampE', xvalue='energy', title=titleEvEnergy, path='Tile/Cell', xbins=120, xmin=-2000., xmax=10000., type='TH1D', run=run, triggers=l1Triggers, subDirectory=True, perPartition=True, perSample=False, perGain=False, allPartitions=True) # 24) Configure histograms with number of Tile E cell's energy titleSynch = 'Tile Time of Flight - Tile measured;Time of Flight - Tile measured [ns]' addTile1DHistogramsArray(helper, tileCellMonAlg, name='TileCellSynch', xvalue='timeDifference', title=titleSynch, path='Tile/Cell', xbins=50, xmin=-100., xmax=100., type='TH1D', run=run, triggers=l1Triggers, subDirectory=False, perPartition=False, perSample=False, perGain=False) from TileMonitoring.TileMonitoringCfgHelper import addTileEtaPhiMapsArray # 25) Configure histograms with everage Tile cell energy vs eta and phy per sample addTileEtaPhiMapsArray(helper, tileCellMonAlg, name='TileCellEneEtaPhi', type='TProfile2D', value='energy', title='Energy Average depostion [MeV]', path='Tile/Cell', run=run, triggers=l1Triggers, perSample=True) # 26) Configure histograms with number of Tile cells over threshold vs eta and phy per sample titleEtaPhiOvThr = ('Position of cells over threshold %s MeV' % kwargs['EnergyThreshold']) addTileEtaPhiMapsArray(helper, tileCellMonAlg, name='TileCellEtaPhiOvThr', type='TH2D', title=titleEtaPhiOvThr, path='Tile/Cell', run=run, triggers=l1Triggers, perSample=True) from TileMonitoring.TileMonitoringCfgHelper import addTileModuleArray # 27) Configure histograms with energy difference between Tile cell's PMTs vs module per partition titleEnergyBal = "Cell's PMTs Energy Balance" titleEnergyBal += ";;Energy balance between cell's PMTs (u-d)/(u+d)" addTileModuleArray(helper, tileCellMonAlg, name='TileCellEnergyBalance', type='TProfile', title=titleEnergyBal, path='Tile/Cell', value='energyBalance', run=run) # 28) Configure histograms with time difference between Tile cell's PMTs vs module per partition titleTimeBal = "Cell's PMTs Time Difference with " titleTimeBal += 'E_{ch} > %s MeV' % (kwargs['EnergyThresholdForTime'] / MeV) titleTimeBal += ";;Time balance between cell's PMTs [ns]" addTileModuleArray(helper, tileCellMonAlg, name='TileCellTimeBalance', type='TProfile', title=titleTimeBal, path='Tile/Cell', value='timeBalance', run=run) accumalator = helper.result() result.merge(accumalator) return result
def METMonitoringConfig(inputFlags): # '''Function to configures some algorithms in the monitoring system.''' # from AthenaConfiguration.ComponentAccumulator import ComponentAccumulator # result = ComponentAccumulator() from AthenaMonitoring import AthMonitorCfgHelper # helper = AthMonitorCfgHelper(inputFlags,'AthMonitorCfg') helper = AthMonitorCfgHelper(inputFlags, 'METMonitor') from AthenaConfiguration.ComponentFactory import CompFactory METRefFinal_MonAlg = helper.addAlgorithm(CompFactory.METMonitoringAlg, 'METRefFinal_MonAlg') # anotherExampleMonAlg = helper.addAlgorithm(METMonitoringExampleAlg,'AnotherExampleMonAlg') met_types = [ "MET_RefFinal", "MET_RefJet", "MET_Muon", "MET_RefEle", "MET_RefGamma", "MET_RefTau", "MET_PVSoftTrk" ] METRefFinal_MonAlg.METContainer = "MET_Reference_AntiKt4EMTopo" METRefFinal_MonAlg.metKeys = met_types METRefFinal_MonAlg.alltrigger = True group = helper.addGroup(METRefFinal_MonAlg, "METMonitor", "MissingEt/AllTriggers/MET_AntiKt4EMTopo/") for mets in met_types: defineHistograms(METRefFinal_MonAlg, group, helper, mets) if inputFlags.DQ.DataType != 'cosmics': METPflow_MonAlg = helper.addAlgorithm(CompFactory.METMonitoringAlg, 'METPflow_MonAlg') pfmet_types = [ "MET_PFlow", "MET_PFlow_RefJet", "MET_PFlow_Muon", "MET_PFlow_RefEle", "MET_PFlow_RefGamma", "MET_PFlow_RefTau", "MET_PFlow_PVSoftTrk" ] METPflow_MonAlg.METContainer = "MET_Reference_AntiKt4EMPFlow" METPflow_MonAlg.metKeys = pfmet_types METPflow_MonAlg.alltrigger = True group = helper.addGroup(METPflow_MonAlg, "METMonitor", "MissingEt/AllTriggers/MET_AntiKt4EMPFlow/") for mets in pfmet_types: defineHistograms(METPflow_MonAlg, group, helper, mets) METEMTopo_MonAlg = helper.addAlgorithm(CompFactory.METMonitoringAlg, 'METEMTopo_MonAlg') emtopomet_types = ["MET_Topo"] METEMTopo_MonAlg.METContainer = "MET_EMTopo" METEMTopo_MonAlg.metKeys = emtopomet_types METEMTopo_MonAlg.alltrigger = True group = helper.addGroup(METEMTopo_MonAlg, "METMonitor", "MissingEt/AllTriggers/MET_Calo/EMTopo") for mets in emtopomet_types: defineHistograms(METEMTopo_MonAlg, group, helper, mets) METCalo_MonAlg = helper.addAlgorithm(CompFactory.METMonitoringAlg, 'METCalo_MonAlg') metcalo_types = ["PEMB", "EMB", "PEME", "EME", "TILE", "HEC", "FCAL"] METCalo_MonAlg.METContainer = "MET_Calo" METCalo_MonAlg.METCaloKeys = metcalo_types METCalo_MonAlg.alltrigger = True group = helper.addGroup(METCalo_MonAlg, "METMonitor", "MissingEt/AllTriggers/MET_Calo/MET_Cell") for mets in metcalo_types: defineHistogramsCalo(METCalo_MonAlg, group, helper, mets) #trigger METRefFinal_XE30_MonAlg = helper.addAlgorithm(CompFactory.METMonitoringAlg, 'METRefFinal_XE30_MonAlg') METRefFinal_XE30_MonAlg.METContainer = "MET_Reference_AntiKt4EMTopo" METRefFinal_XE30_MonAlg.metTotalKey = "FinalTrk" METRefFinal_XE30_MonAlg.metKeys = met_types METRefFinal_XE30_MonAlg.dotrigger = True group = helper.addGroup(METRefFinal_XE30_MonAlg, "METMonitor", "MissingEt/TrigXE30/MET_AntiKt4EMTopo/") for mets in met_types: defineHistograms(METRefFinal_XE30_MonAlg, group, helper, mets) if inputFlags.DQ.DataType != 'cosmics': METPflow_XE30_MonAlg = helper.addAlgorithm( CompFactory.METMonitoringAlg, 'METPflow_XE30_MonAlg') METPflow_XE30_MonAlg.METContainer = "MET_Reference_AntiKt4EMPFlow" METPflow_XE30_MonAlg.metTotalKey = "FinalTrk" METPflow_XE30_MonAlg.metKeys = pfmet_types METPflow_XE30_MonAlg.dotrigger = True group = helper.addGroup(METPflow_XE30_MonAlg, "METMonitor", "MissingEt/TrigXE30/MET_AntiKt4EMPflow/") for mets in pfmet_types: defineHistograms(METPflow_XE30_MonAlg, group, helper, mets) METCalo_XE30_MonAlg = helper.addAlgorithm(CompFactory.METMonitoringAlg, 'METCalo_XE30_MonAlg') METCalo_XE30_MonAlg.METCaloContainer = "MET_Calo" METCalo_XE30_MonAlg.METCaloKeys = metcalo_types METCalo_XE30_MonAlg.dotrigger = True group = helper.addGroup(METCalo_XE30_MonAlg, "METMonitor", "MissingEt/TrigXE30/MET_Calo/MET_Cell") for mets in metcalo_types: defineHistogramsCalo(METCalo_XE30_MonAlg, group, helper, mets) METEMTopo_XE30_MonAlg = helper.addAlgorithm(CompFactory.METMonitoringAlg, 'METEMTopo_XE30_MonAlg') METEMTopo_XE30_MonAlg.METContainer = "MET_EMTopo" METEMTopo_XE30_MonAlg.METAntiKt4EMTopoContainer = "MET_Reference_AntiKt4EMTopo" emtopomet_types = ["MET_Topo"] METEMTopo_XE30_MonAlg.metKeys = emtopomet_types METEMTopo_XE30_MonAlg.dotrigger = True METEMTopo_XE30_group = helper.addGroup( METEMTopo_XE30_MonAlg, "METMonitor", "MissingEt/TrigXE30/MET_Calo/EMTopo") for mets in emtopomet_types: defineHistograms(METEMTopo_XE30_MonAlg, METEMTopo_XE30_group, helper, mets) # metcut METRefFinal_METCut_MonAlg = helper.addAlgorithm( CompFactory.METMonitoringAlg, 'METRefFinal_METCut_MonAlg') METRefFinal_METCut_MonAlg.METContainer = "MET_Reference_AntiKt4EMTopo" METRefFinal_METCut_MonAlg.metTotalKey = "FinalTrk" METRefFinal_METCut_MonAlg.metKeys = met_types METRefFinal_METCut_MonAlg.dometcut = True METRefFinal_METCut_MonAlg.metcut = 80 group = helper.addGroup(METRefFinal_METCut_MonAlg, "METMonitor", "MissingEt/CutMet80/MET_AntiKt4EMTopo/") for mets in met_types: defineHistograms(METRefFinal_METCut_MonAlg, group, helper, mets) if inputFlags.DQ.DataType != 'cosmics': METPflow_METCut_MonAlg = helper.addAlgorithm( CompFactory.METMonitoringAlg, 'METPflow_METCut_MonAlg') METPflow_METCut_MonAlg.METContainer = "MET_Reference_AntiKt4EMPFlow" METPflow_METCut_MonAlg.metKeys = pfmet_types METPflow_METCut_MonAlg.dometcut = True METPflow_METCut_MonAlg.metcut = 80 group = helper.addGroup(METPflow_METCut_MonAlg, "METMonitor", "MissingEt/CutMet80/MET_AntiKt4EMPflow/") for mets in pfmet_types: defineHistograms(METPflow_METCut_MonAlg, group, helper, mets) METCalo_METCut_MonAlg = helper.addAlgorithm(CompFactory.METMonitoringAlg, 'METCalo_METCut_MonAlg') metcalo_types = ["PEMB", "EMB", "PEME", "EME", "TILE", "HEC", "FCAL"] METCalo_METCut_MonAlg.METCaloContainer = "MET_Calo" METCalo_METCut_MonAlg.METCaloKeys = metcalo_types METCalo_METCut_MonAlg.dometcut = True METCalo_METCut_MonAlg.metcut = 80 METCalo_METCut_group = helper.addGroup( METCalo_METCut_MonAlg, "METMonitor", "MissingEt/CutMet80/MET_Calo/MET_Cell") for mets in metcalo_types: defineHistogramsCalo(METCalo_METCut_MonAlg, METCalo_METCut_group, helper, mets) METEMTopo_METCut_MonAlg = helper.addAlgorithm(CompFactory.METMonitoringAlg, 'METEMTopo_METCut_MonAlg') METEMTopo_METCut_MonAlg.METContainer = "MET_EMTopo" METEMTopo_METCut_MonAlg.METAntiKt4EMTopoContainer = "MET_Reference_AntiKt4EMTopo" emtopomet_types = ["MET_Topo"] METEMTopo_METCut_MonAlg.metKeys = emtopomet_types METEMTopo_METCut_MonAlg.dometcut = True METEMTopo_METCut_MonAlg.metcut = 80 METEMTopo_METCut_group = helper.addGroup( METEMTopo_METCut_MonAlg, "METMonitor", "MissingEt/CutMet80/MET_Calo/EMTopo") for mets in emtopomet_types: defineHistograms(METEMTopo_METCut_MonAlg, METEMTopo_METCut_group, helper, mets) # Jet cleaning jetCleaningTool = CompFactory.JetCleaningTool() jetCleaningTool.CutLevel = "LooseBad" # jetCleaningTool.CutLevel = "TightBad" jetCleaningTool.DoUgly = False JetCleaning_METMonAlg = helper.addAlgorithm(CompFactory.METMonitoringAlg, 'JetCleaning_METMonAlg') JetCleaning_METMonAlg.metKeys = met_types JetCleaning_METMonAlg.DoJetCleaning = True JetCleaning_METMonAlg.JetCleaningTool = jetCleaningTool JetCleaningGroup = helper.addGroup( JetCleaning_METMonAlg, "METMonitor", "MissingEt/Jetcleaning/MET_AntiKt4EMTopo/") JetCleaning_METMonAlg.JetContainerName = "AntiKt4EMTopoJets" for mets in met_types: if mets == 'MET_PFlow_PVSoftTrk': JetCleaning_METMonAlg.JetContainerName = "AntiKt4EMPFlowJets" defineHistograms(JetCleaning_METMonAlg, JetCleaningGroup, helper, mets) if inputFlags.DQ.DataType != 'cosmics': PflowJetCleaning_METMonAlg = helper.addAlgorithm( CompFactory.METMonitoringAlg, 'PflowJetCleaning_METMonAlg') PflowJetCleaning_METMonAlg.METContainer = "MET_Reference_AntiKt4EMPFlow" PflowJetCleaning_METMonAlg.metKeys = pfmet_types PflowJetCleaning_METMonAlg.DoJetCleaning = True PflowJetCleaning_METMonAlg.JetCleaningTool = jetCleaningTool PflowJetCleaningGroup = helper.addGroup( PflowJetCleaning_METMonAlg, "METMonitor", "MissingEt/Jetcleaning/MET_AntiKt4EMPflow/") PflowJetCleaning_METMonAlg.JetContainerName = "AntiKt4EMPFlowJets" for mets in pfmet_types: defineHistograms(PflowJetCleaning_METMonAlg, PflowJetCleaningGroup, helper, mets) METCaloJetCleaning_MonAlg = helper.addAlgorithm( CompFactory.METMonitoringAlg, 'METCaloJetCleaning_MonAlg') metcalo_types = ["PEMB", "EMB", "PEME", "EME", "TILE", "HEC", "FCAL"] METCaloJetCleaning_MonAlg.METCaloContainer = "MET_Calo" METCaloJetCleaning_MonAlg.METCaloKeys = metcalo_types METCaloJetCleaning_MonAlg.DoJetCleaning = True METCaloJetCleaning_MonAlg.JetCleaningTool = jetCleaningTool group = helper.addGroup(METCaloJetCleaning_MonAlg, "METMonitor", "MissingEt/Jetcleaning/MET_Calo/MET_Cell") for mets in metcalo_types: defineHistogramsCalo(METCaloJetCleaning_MonAlg, group, helper, mets) METEMTopoJetCleaning_MonAlg = helper.addAlgorithm( CompFactory.METMonitoringAlg, 'METEMTopoJetCleaning_MonAlg') emtopomet_types = ["MET_Topo"] METEMTopoJetCleaning_MonAlg.METContainer = "MET_EMTopo" METEMTopoJetCleaning_MonAlg.metKeys = emtopomet_types METEMTopoJetCleaning_MonAlg.DoJetCleaning = True METEMTopoJetCleaning_MonAlg.JetCleaningTool = jetCleaningTool group = helper.addGroup(METEMTopoJetCleaning_MonAlg, "METMonitor", "MissingEt/Jetcleaning/MET_Calo/EMTopo/") for mets in emtopomet_types: defineHistograms(METEMTopoJetCleaning_MonAlg, group, helper, mets) # Badjets jetCleaningTool.CutLevel = "LooseBad" # jetCleaningTool.CutLevel = "TightBad" jetCleaningTool.DoUgly = False BadJets_METMonAlg = helper.addAlgorithm(CompFactory.METMonitoringAlg, 'BadJets_METMonAlg') BadJets_METMonAlg.metKeys = met_types BadJets_METMonAlg.DoJetCleaning = True BadJets_METMonAlg.alltrigger = True BadJets_METMonAlg.DoBadJets = True BadJets_METMonAlg.JetCleaningTool = jetCleaningTool BadJets_METMonAlg.JetContainerName = "AntiKt4EMTopoJets" BadJetsGroup = helper.addGroup( BadJets_METMonAlg, "METMonitor", "MissingEt/AllTriggers/BadJets/MET_AntiKt4EMTopo") for mets in met_types: defineHistograms(BadJets_METMonAlg, BadJetsGroup, helper, mets) if inputFlags.DQ.DataType != 'cosmics': BadPFJets_METMonAlg = helper.addAlgorithm(CompFactory.METMonitoringAlg, 'BadPFJets_METMonAlg') BadPFJets_METMonAlg.METContainer = "MET_Reference_AntiKt4EMPFlow" BadPFJets_METMonAlg.metKeys = pfmet_types BadPFJets_METMonAlg.DoJetCleaning = True BadPFJets_METMonAlg.alltrigger = True BadPFJets_METMonAlg.DoBadJets = True BadPFJets_METMonAlg.JetCleaningTool = jetCleaningTool BadPFJets_METMonAlg.JetContainerName = "AntiKt4EMPFlowJets" BadPFJetsGroup = helper.addGroup( BadPFJets_METMonAlg, "METMonitor", "MissingEt/AllTriggers/BadJets/MET_AntiKt4EMPflow/") for mets in pfmet_types: defineHistograms(BadPFJets_METMonAlg, BadPFJetsGroup, helper, mets) BadJets_CaloMETMonAlg = helper.addAlgorithm(CompFactory.METMonitoringAlg, 'BadJets_CaloMETMonAlg') metcalo_types = ["PEMB", "EMB", "PEME", "EME", "TILE", "HEC", "FCAL"] BadJets_CaloMETMonAlg.METCaloContainer = "MET_Calo" BadJets_CaloMETMonAlg.METCaloKeys = metcalo_types BadJets_CaloMETMonAlg.DoJetCleaning = True BadJets_CaloMETMonAlg.alltrigger = True BadJets_CaloMETMonAlg.DoBadJets = True BadJets_CaloMETMonAlg.JetContainerName = "AntiKt4EMTopoJets" BadJets_CaloMETMonAlg.JetCleaningTool = jetCleaningTool BadJetsGroup_CaloMETMonAlg = helper.addGroup( BadJets_CaloMETMonAlg, "METMonitor", "MissingEt/AllTriggers/BadJets/MET_Calo/MET_Cell") for mets in metcalo_types: defineHistogramsCalo(BadJets_CaloMETMonAlg, BadJetsGroup_CaloMETMonAlg, helper, mets) BadJets_EMTopoMETMonAlg = helper.addAlgorithm(CompFactory.METMonitoringAlg, 'BadJets_EMTopoMETMonAlg') BadJets_EMTopoMETMonAlg.metKeys = emtopomet_types BadJets_EMTopoMETMonAlg.METContainer = "MET_EMTopo" BadJets_EMTopoMETMonAlg.DoJetCleaning = True BadJets_EMTopoMETMonAlg.alltrigger = True BadJets_EMTopoMETMonAlg.DoBadJets = True BadJets_EMTopoMETMonAlg.JetCleaningTool = jetCleaningTool BadJetsGroup = helper.addGroup( BadJets_EMTopoMETMonAlg, "METMonitor", "MissingEt/AllTriggers/BadJets/MET_Calo/EMTopo") for mets in emtopomet_types: defineHistograms(BadJets_EMTopoMETMonAlg, BadJetsGroup, helper, mets) return helper.result()
def RpcMonitoringConfig(inputFlags): from AthenaMonitoring import AthMonitorCfgHelper helper = AthMonitorCfgHelper(inputFlags, 'RpcMonitoringConfig') from AthenaConfiguration.ComponentFactory import CompFactory RPCMonitorAlgorithm = CompFactory.RPCMonitorAlgorithm rpcMonitorAlg = helper.addAlgorithm(RPCMonitorAlgorithm, "RPCMonitorAlgorithmAlg") # set properties of algorithm RPCMonitorAlgorithm rpcMonitorAlg.MinRoIDR = 0.3 rpcMonitorAlg.MinPt = 2000 rpcMonitorAlg.MuQuality = 1 myGroup = helper.addGroup(rpcMonitorAlg, 'RPCMonitorAlgorithm', 'Muon/MuonRawDataMonitoring/RPC/') myGroup.defineHistogram('run;Run', title='Run Number;run;Events', type='TH1I', path='PlotCand', xbins=1000000, xmin=-0.5, xmax=999999.5) myGroup.defineHistogram('nMu;NMuon', title='Number of Muons;nMuons;Events', type='TH1I', path='PlotCand', xbins=10, xmin=-0.5, xmax=9.5) myGroup.defineHistogram('nMuBarrel;NMuonBarrel', title='Number of Barrel Muons;nMuons;Events', type='TH1I', path='PlotCand', xbins=5, xmin=-0.5, xmax=4.5) myGroup.defineHistogram('muPtCollection;MuonPt', title='muon Pt;Pt[MeV];Muons', type='TH1D', path='PlotCand', xbins=200, xmin=0, xmax=1000e3) myGroup.defineHistogram('roiEtaCollection;roiEta', title='roi eta;roi #eta;rois', type='TH1D', path='PlotCand', xbins=50, xmin=-2.5, xmax=2.5) myGroup.defineHistogram('roiBarrelEtaCollection;roiBarrelEta', title='Barrel roi eta;roi #eta;rois', type='TH1D', path='PlotCand', xbins=50, xmin=-2.5, xmax=2.5) myGroup.defineHistogram('roiBarrelThrCollection;roiBarrelThrs', title='Barrel roi threshold;roi threshold;rois', type='TH1I', path='PlotCand', xbins=6, xmin=0.5, xmax=6.5) myGroup.defineHistogram('ptDen;Pt', title='muon Pt;Pt[MeV];Muons', type='TH1D', path='TriggerEff/Denominator', xbins=150, xmin=0.0, xmax=150.0e3) myGroup.defineHistogram('ptDen;Pt_bins', title='muon Pt;Pt[MeV];Muons', type='TH1D', path='TriggerEff/Denominator', xbins=[ 0, 3.0e3, 4.0e3, 5.0e3, 6.0e3, 7.0e3, 8.0e3, 10.0e3, 12.0e3, 15.0e3, 20.0e3, 25.0e3, 30.0e3, 40.0e3, 60.0e3, 80.0e3, 81.0e3 ]) myGroup.defineHistogram('ptNumThr1;Pt', title='muon Pt;Pt[MeV];Muons', type='TH1D', path='TriggerEff/Thr1', xbins=150, xmin=0.0, xmax=150.0e3) myGroup.defineHistogram('ptNumThr1;Pt_bins', title='muon Pt;Pt[MeV];Muons', type='TH1D', path='TriggerEff/Thr1', xbins=[ 0, 3.0e3, 4.0e3, 5.0e3, 6.0e3, 7.0e3, 8.0e3, 10.0e3, 12.0e3, 15.0e3, 20.0e3, 25.0e3, 30.0e3, 40.0e3, 60.0e3, 80.0e3, 81.0e3 ]) myGroup.defineHistogram('etaDen,phiDen;barrel_eta_phi', type='TH2D', title='muons;#eta;#phi', path='TriggerEff/Denominator', xbins=42, xmin=-1.05, xmax=1.05, ybins=32, ymin=-3.1415926, ymax=3.1415926) myGroup.defineHistogram('etaNumThr1,phiNumThr1;barrel_eta_phi', type='TH2D', title='muons;#eta;#phi', path='TriggerEff/Thr1', xbins=42, xmin=-1.05, xmax=1.05, ybins=32, ymin=-3.1415926, ymax=3.1415926) myGroup.defineHistogram( 'isPassed,ptDen;eff_vs_Pt', title='Trigger Efficiency;Pt[MeV];#epsilon', type='TEfficiency', path='TriggerEff', #xbins=[0,3.0e3,4.0e3,5.0e3,6.0e3,7.0e3,8.0e3,10.0e3,12.0e3,15.0e3,20.0e3,25.0e3,30.0e3,40.0e3,60.0e3,80.0e3,81.0e3]) xbins=10, xmin=0.0, xmax=80.0e3) myGroup.defineHistogram('isPassed,etaDen,phiDen;eff_vs_eta_phi', title='Trigger Efficiency;#eta;#phi;#epsilon', type='TEfficiency', path='TriggerEff', xbins=42, xmin=-1.05, xmax=1.05, ybins=32, ymin=-3.1415926, ymax=3.1415926) return helper.result()
def CpmMonitoringConfig(inputFlags): '''Function to configure LVL1 Cpm algorithm in the monitoring system.''' import math # get the component factory - used for getting the algorithms from AthenaConfiguration.ComponentFactory import CompFactory from AthenaConfiguration.ComponentAccumulator import ComponentAccumulator result = ComponentAccumulator() # make the athena monitoring helper from AthenaMonitoring import AthMonitorCfgHelper helper = AthMonitorCfgHelper(inputFlags,'CpmMonitoringCfg') # get any algorithms CpmMonAlg = helper.addAlgorithm(CompFactory.CpmMonitorAlgorithm,'CpmMonAlg') # add any steering groupName = 'CpmMonitor' # the monitoring group name is also used for the package name CpmMonAlg.PackageName = groupName crates = 4 CpmMonAlg.s_crates = crates maxSlices = 5 CpmMonAlg.s_maxSlices = maxSlices isolBits = 4 CpmMonAlg.s_isolBits = isolBits tobsPerCPM = 5 CpmMonAlg.s_tobsPerCPM = tobsPerCPM maxTobsPerCmx = 70 CpmMonAlg.MaxTOBsPerCMX = maxTobsPerCmx # set up the directory structure mainDir = 'L1Calo' trigPath = 'CPM' # replaces m_rootDir errorDir=trigPath+"/Errors/Hardware" monDetailPath=errorDir+"/Detail/" monCPMinputPath=trigPath+"/Input/" monRoIPath=trigPath+"/Output/" #monCMXPath=trigPath+"_CMX/Errors/Hardware/" monCMXinPath=trigPath+"_CMX/Input/" #monCMXoutPath=trigPath+"_CMX/Output/" # add monitoring algorithm to group, with group name and main directory myGroup = helper.addGroup(CpmMonAlg, groupName , mainDir) # # CPM Towers - monCPMinputPath # # Trigger Tower plots - for binning see TrigT1CaloLWHistogramTool::bookPPMEmEtaVsPhi etabins_2d=66 etamin_2d=-3.3 etamax_2d=3.3 phibins_2d=64 phimin_2d=0.0 phimax_2d=64.0 # for 2D histograms x,y;histogram alias myGroup.defineHistogram('etaTT,phiTT;ppm_em_2d_etaPhi_tt_Hitmap',title='PPM Trigger Tower EM eta/phi;Tower #eta; Tower #phi',type='TH2F', cutmask='mask_em_TT',path=monCPMinputPath, xbins=etabins_2d,xmin=etamin_2d,xmax=etamax_2d,ybins=phibins_2d,ymin=phimin_2d,ymax=phimax_2d) myGroup.defineHistogram('etaTT,phiTT;ppm_had_2d_etaPhi_tt_Hitmap',title='PPM Trigger Tower HAD eta/phi;Tower #eta; Tower #phi',type='TH2F', cutmask='mask_had_TT',path=monCPMinputPath, xbins=etabins_2d,xmin=etamin_2d,xmax=etamax_2d,ybins=phibins_2d,ymin=phimin_2d,ymax=phimax_2d) # CPMTower plots maxEnergyRange = 256 # Maximum energy plotted # EM 1d myGroup.defineHistogram('etCpmTT_em;cpm_em_1d_tt_Et', title='CPM Tower EM Et;CPM Tower EM Energy;', cutmask='',path=monCPMinputPath,xbins=maxEnergyRange,xmin=0,xmax=maxEnergyRange) myGroup.defineHistogram('etaCpmTT_em;cpm_em_1d_tt_Eta', title='CPM Tower EM eta;CPM Tower EM #eta;', cutmask='',path=monCPMinputPath,xbins=50,xmin=-2.5,xmax=2.5) myGroup.defineHistogram('phiCpmTT_em;cpm_em_1d_tt_Phi', title='CPM Tower EM phi;CPM Tower EM #phi;', cutmask='',path=monCPMinputPath,xbins=64,xmin=0,xmax=2*math.pi) # EM 2d myGroup.defineHistogram('etaCpmTT_em,phiScaledCpmTT_em;cpm_em_2d_etaPhi_tt_Hitmap', title='CPM Tower EM eta/phi;Tower #eta; Tower #phi',type='TH2F', cutmask='',path=monCPMinputPath, xbins=etabins_2d,xmin=etamin_2d,xmax=etamax_2d,ybins=phibins_2d,ymin=phimin_2d,ymax=phimax_2d) myGroup.defineHistogram('etaCpmTT_em,phiScaledCpmTT_em;cpm_em_2d_etaPhi_tt_EtWeighted', title='CPM Tower EM eta/phi weighted;Tower #eta; Tower #phi',type='TH2F', cutmask='',path=monCPMinputPath, xbins=etabins_2d,xmin=etamin_2d,xmax=etamax_2d,ybins=phibins_2d,ymin=phimin_2d,ymax=phimax_2d, weight="etCpmTT_em") # HAD 1d myGroup.defineHistogram('etCpmTT_had;cpm_had_1d_tt_Et', title='CPM Tower HAD Et;CPM Tower HAD Energy;', cutmask='',path=monCPMinputPath,xbins=maxEnergyRange,xmin=0,xmax=maxEnergyRange) myGroup.defineHistogram('etaCpmTT_had;cpm_had_1d_tt_Eta', title='CPM Tower HAD eta;CPM Tower HAD #eta;', cutmask='',path=monCPMinputPath,xbins=50,xmin=-2.5,xmax=2.5) myGroup.defineHistogram('phiCpmTT_had;cpm_had_1d_tt_Phi', title='CPM Tower HAD phi;CPM Tower HAD #phi;', cutmask='',path=monCPMinputPath,xbins=64,xmin=0,xmax=2*math.pi) # HAD 2d myGroup.defineHistogram('etaCpmTT_had,phiScaledCpmTT_had;cpm_had_2d_etaPhi_tt_Hitmap', title='CPM Tower HAD eta/phi;Tower #eta; Tower #phi',type='TH2F', cutmask='',path=monCPMinputPath, xbins=etabins_2d,xmin=etamin_2d,xmax=etamax_2d,ybins=phibins_2d,ymin=phimin_2d,ymax=phimax_2d) myGroup.defineHistogram('etaCpmTT_had,phiScaledCpmTT_had;cpm_had_2d_etaPhi_tt_EtWeighted' ,title='CPM Tower HAD eta/phi weighted;Tower #eta; Tower #phi',type='TH2F', cutmask='',path=monCPMinputPath, xbins=etabins_2d,xmin=etamin_2d,xmax=etamax_2d,ybins=phibins_2d,ymin=phimin_2d,ymax=phimax_2d, weight="etCpmTT_had") xbinshist = int(crates * maxSlices) myGroup.defineHistogram('sliceCpmTT_tot,peakCpmTT_tot;cpm_2d_tt_Slices' ,title='CPM Slices and Triggered Slice;Crate/Number of Slices;Triggered Slice',type='TH2F', cutmask='',path=monCPMinputPath, xbins=xbinshist,xmin=0,xmax=xbinshist,ybins=maxSlices,ymin=0,ymax=maxSlices) # # Errors - monDetailPath # # em - tot means addition of CPM and Overlap containers myGroup.defineHistogram('etaCpmTT_em_tot,phiScaledCpmTT_em_tot;cpm_em_2d_etaPhi_tt_Parity' ,title='CPM Tower EM Parity Errors;Tower #eta; Tower #phi',type='TH2F', cutmask='parityErrorCpmTT_em',path=monDetailPath, xbins=etabins_2d,xmin=etamin_2d,xmax=etamax_2d,ybins=phibins_2d,ymin=phimin_2d,ymax=phimax_2d) myGroup.defineHistogram('etaCpmTT_em_tot,phiScaledCpmTT_em_tot;cpm_em_2d_etaPhi_tt_LinkDown', title='CPM Tower EM Link Down Errors;Tower #eta; Tower #phi',type='TH2F', cutmask='linkDownErrorCpmTT_em',path=monDetailPath, xbins=etabins_2d,xmin=etamin_2d,xmax=etamax_2d,ybins=phibins_2d,ymin=phimin_2d,ymax=phimax_2d) # had myGroup.defineHistogram('etaCpmTT_had_tot,phiScaledCpmTT_had_tot;cpm_had_2d_etaPhi_tt_Parity', title='CPM Tower HAD Parity Errors;Tower #eta; Tower #phi',type='TH2F', cutmask='parityErrorCpmTT_had',path=monDetailPath, xbins=etabins_2d,xmin=etamin_2d,xmax=etamax_2d,ybins=phibins_2d,ymin=phimin_2d,ymax=phimax_2d) myGroup.defineHistogram('etaCpmTT_had_tot,phiScaledCpmTT_had_tot;cpm_had_2d_etaPhi_tt_LinkDown', title='CPM Tower HAD Link Down Errors;Tower #eta; Tower #phi',type='TH2F', cutmask='linkDownErrorCpmTT_had',path=monDetailPath, xbins=etabins_2d,xmin=etamin_2d,xmax=etamax_2d,ybins=phibins_2d,ymin=phimin_2d,ymax=phimax_2d) # # CPM TOB RoIs - monRoIPath # isolRange=32 # Maximum range for encoded isolation myGroup.defineHistogram('energyTobRoIsEner;cpm_1d_roi_EnergyEm', title='CPM TOB RoI Cluster Energy EM;Cluster Energy;', cutmask='mask_tobroi_ener_em',path=monRoIPath, xbins=maxEnergyRange,xmin=0,xmax=maxEnergyRange) myGroup.defineHistogram('energyTobRoIsEner;cpm_1d_roi_EnergyTau', title='CPM TOB RoI Cluster Energy Tau;Cluster Energy;', cutmask='mask_tobroi_ener_tau',path=monRoIPath, xbins=maxEnergyRange,xmin=0,xmax=maxEnergyRange) myGroup.defineHistogram('energyTobRoIsIsol;cpm_1d_roi_IsolationEm', title='CPM TOB RoI Encoded Isolation Value EM;;', cutmask='mask_tobroi_isol_em',path=monRoIPath, xbins=isolRange,xmin=0,xmax=isolRange) myGroup.defineHistogram('energyTobRoIsIsol;cpm_1d_roi_IsolationTau', title='CPM TOB RoI Encoded Isolation Value Tau;;', cutmask='mask_tobroi_isol_tau',path=monRoIPath, xbins=isolRange,xmin=0,xmax=isolRange) # bit masks to be done #myGroup.defineHistogram('bitsTobRoIsIsol;cpm_1d_roi_IsolationBitsEm', title='CPM TOB RoI Encoded Isolation Bits EM;;', # cutmask='mask_tobroi_isol_em',path=monRoIPath, # xbins=isolBits,xmin=0,xmax=isolBits) # 2D # For binning see TrigT1CaloLWHistogramTool::bookCPMRoIEtaVsPhi,fillCPMRoIEtaVsPhi m_shrinkEtaBins=true # isolation myGroup.defineHistogram('etaTobRoIsIsol,phiTobRoIsIsol;cpm_2d_etaPhi_roi_HitmapIsolEm', title='CPM TOB RoIs EM Non-zero Isolation Hit Map;Tower #eta; Tower #phi',type='TH2F', cutmask='mask_tobroi_isol_em',path=monRoIPath, xbins=etabins_2d,xmin=etamin_2d,xmax=etamax_2d,ybins=phibins_2d,ymin=phimin_2d,ymax=phimax_2d) myGroup.defineHistogram('etaTobRoIsIsol,phiTobRoIsIsol;cpm_2d_etaPhi_roi_HitmapIsolTau', title='CPM TOB RoIs Tau Non-zero Isolation Hit Map;Tower #eta; Tower #phi',type='TH2F', cutmask='mask_tobroi_isol_tau',path=monRoIPath, xbins=etabins_2d,xmin=etamin_2d,xmax=etamax_2d,ybins=phibins_2d,ymin=phimin_2d,ymax=phimax_2d) # energy myGroup.defineHistogram('etaTobRoIsEner,phiTobRoIsEner;cpm_2d_etaPhi_roi_HitmapEm', title='CPM TOB RoIs EM Hit Map;Tower #eta; Tower #phi',type='TH2F', cutmask='mask_tobroi_ener_em',path=monRoIPath, xbins=etabins_2d,xmin=etamin_2d,xmax=etamax_2d,ybins=phibins_2d,ymin=phimin_2d,ymax=phimax_2d) myGroup.defineHistogram('etaTobRoIsEner,phiTobRoIsEner;cpm_2d_etaPhi_roi_EtWeightedEm', title='CPM TOB RoIs EM Weighted by Energy;Tower #eta; Tower #phi',type='TH2F', cutmask='mask_tobroi_ener_em',path=monRoIPath, xbins=etabins_2d,xmin=etamin_2d,xmax=etamax_2d,ybins=phibins_2d,ymin=phimin_2d,ymax=phimax_2d, weight="energyTobRoIsEner") myGroup.defineHistogram('etaTobRoIsEner,phiTobRoIsEner;cpm_2d_etaPhi_roi_HitmapTau', title='CPM TOB RoIs Tau Hit Map;Tower #eta; Tower #phi',type='TH2F', cutmask='mask_tobroi_ener_tau',path=monRoIPath, xbins=etabins_2d,xmin=etamin_2d,xmax=etamax_2d,ybins=phibins_2d,ymin=phimin_2d,ymax=phimax_2d) myGroup.defineHistogram('etaTobRoIsEner,phiTobRoIsEner;cpm_2d_etaPhi_roi_EtWeightedTau', title='CPM TOB RoIs Tau Weighted by Energy;Tower #eta; Tower #phi',type='TH2F', cutmask='mask_tobroi_ener_tau',path=monRoIPath, xbins=etabins_2d,xmin=etamin_2d,xmax=etamax_2d,ybins=phibins_2d,ymin=phimin_2d,ymax=phimax_2d, weight="energyTobRoIsEner") # TOBs per CPM myGroup.defineHistogram('tobPerCPMEm;cpm_1d_roi_TOBsPerCPMEm', title='CPM TOB RoI TOBs per CPM EM;Number of TOBs;', cutmask='',path=monRoIPath, xbins=tobsPerCPM+1,xmin=1,xmax=tobsPerCPM+2) myGroup.defineHistogram('tobPerCPMTau;cpm_1d_roi_TOBsPerCPMTau', title='CPM TOB RoI TOBs per CPM Tau;Number of TOBs;', cutmask='',path=monRoIPath, xbins=tobsPerCPM+1,xmin=1,xmax=tobsPerCPM+2) # How to set labels e.g. # m_h_cpm_1d_roi_TOBsPerCPMEm->GetXaxis()->SetBinLabel(s_tobsPerCPM + 1, "More"); # # CMX-CP TOBs - monCMXinPath # myGroup.defineHistogram('enerTobCmxEner;cmx_1d_tob_TOBsPerCMXLeft', title='CMX-CP TOBs per CMX Left;Number of TOBs;', cutmask='',path=monCMXinPath, xbins=maxTobsPerCmx,xmin=0,xmax=maxTobsPerCmx) acc = helper.result() result.merge(acc) return result