''' Settings nested cross-validation. ''' K_range = [1,2,3,4,5,6,7] no_folds = 5 no_threads = 5 parallel = False folder_results = './results/gaussian_gaussian_ard/' output_file = folder_results+'results.txt' files_nested_performances = [folder_results+'fold_%s.txt'%(fold+1) for fold in range(no_folds)] ''' Construct the parameter search. ''' parameter_search = [{'K':K, 'hyperparameters':hyperparameters} for K in K_range] ''' Run the cross-validation framework. ''' nested_crossval = MatrixNestedCrossValidation( method=method, R=R, M=M, K=no_folds, P=no_threads, parameter_search=parameter_search, train_config=train_config, predict_config=predict_config, file_performance=output_file, files_nested_performances=files_nested_performances, ) nested_crossval.run(parallel=parallel)
} ''' Settings nested cross-validation. ''' K_range = [1, 2, 3, 4, 5, 6, 7] no_folds = 5 no_threads = 5 parallel = False folder_results = './results/gaussian_laplace_ig/' output_file = folder_results + 'results.txt' files_nested_performances = [ folder_results + 'fold_%s.txt' % (fold + 1) for fold in range(no_folds) ] ''' Construct the parameter search. ''' parameter_search = [{ 'K': K, 'hyperparameters': hyperparameters } for K in K_range] ''' Run the cross-validation framework. ''' nested_crossval = MatrixNestedCrossValidation( method=method, R=R, M=M, K=no_folds, P=no_threads, parameter_search=parameter_search, train_config=train_config, predict_config=predict_config, file_performance=output_file, files_nested_performances=files_nested_performances, ) nested_crossval.run(parallel=parallel)
''' Settings nested cross-validation. ''' K_range = [3,4,5,6,7] no_folds = 5 no_threads = 5 stratify_rows = False parallel = False folder_results = './results/gaussian_exponential_ard/' output_file = folder_results+'results.txt' files_nested_performances = [folder_results+'fold_%s.txt'%(fold+1) for fold in range(no_folds)] ''' Construct the parameter search. ''' parameter_search = [{'K':K, 'hyperparameters':hyperparameters} for K in K_range] ''' Run the cross-validation framework. ''' nested_crossval = MatrixNestedCrossValidation( method=method, R=R, M=M, K=no_folds, P=no_threads, parameter_search=parameter_search, train_config=train_config, predict_config=predict_config, file_performance=output_file, files_nested_performances=files_nested_performances, ) nested_crossval.run(parallel=parallel, stratify_rows=stratify_rows)
''' Settings nested cross-validation. ''' K_range = [3,4,5,6,7] no_folds = 5 no_threads = 5 stratify_rows = False parallel = False folder_results = './results/gaussian_gaussian_exponential/' output_file = folder_results+'results.txt' files_nested_performances = [folder_results+'fold_%s.txt'%(fold+1) for fold in range(no_folds)] ''' Construct the parameter search. ''' parameter_search = [{'K':K, 'hyperparameters':hyperparameters} for K in K_range] ''' Run the cross-validation framework. ''' nested_crossval = MatrixNestedCrossValidation( method=method, R=R, M=M, K=no_folds, P=no_threads, parameter_search=parameter_search, train_config=train_config, predict_config=predict_config, file_performance=output_file, files_nested_performances=files_nested_performances, ) nested_crossval.run(parallel=parallel, stratify_rows=stratify_rows)