def test_init(): I, J = 10, 9 values_K = [1, 2, 4, 5] R = 2 * numpy.ones((I, J)) M = numpy.ones((I, J)) priors = {'alpha': 3, 'beta': 4, 'lambdaU': 5, 'lambdaV': 6} initUV = 'exp' iterations = 11 linesearch = LineSearch(classifier, values_K, R, M, priors, initUV, iterations) assert linesearch.I == I assert linesearch.J == J assert numpy.array_equal(linesearch.values_K, values_K) assert numpy.array_equal(linesearch.R, R) assert numpy.array_equal(linesearch.M, M) assert linesearch.priors == priors assert linesearch.iterations == iterations assert linesearch.initUV == initUV assert linesearch.all_performances == { 'BIC': [], 'AIC': [], 'loglikelihood': [], 'MSE': [], 'ELBO': [] }
def test_search(): # Check whether we get no exceptions... I, J = 10, 9 values_K = [1, 2, 4, 5] R = 2 * numpy.ones((I, J)) R[0, 0] = 1 M = numpy.ones((I, J)) priors = {'alpha': 3, 'beta': 4, 'lambdaU': 5, 'lambdaV': 6} initUV = 'exp' iterations = 1 linesearch = LineSearch(classifier, values_K, R, M, priors, initUV, iterations) linesearch.search()
def test_all_values(): I, J = 10, 9 values_K = [1, 2, 4, 5] R = 2 * numpy.ones((I, J)) M = numpy.ones((I, J)) priors = {'alpha': 3, 'beta': 4, 'lambdaU': 5, 'lambdaV': 6} initUV = 'exp' iterations = 11 linesearch = LineSearch(classifier, values_K, R, M, priors, initUV, iterations) linesearch.all_performances = { 'BIC': [10, 9, 8, 7], 'AIC': [11, 13, 12, 14], 'loglikelihood': [16, 15, 18, 17] } assert numpy.array_equal(linesearch.all_values('BIC'), [10, 9, 8, 7]) assert numpy.array_equal(linesearch.all_values('AIC'), [11, 13, 12, 14]) assert numpy.array_equal(linesearch.all_values('loglikelihood'), [16, 15, 18, 17]) with pytest.raises(AssertionError) as error: linesearch.all_values('FAIL') assert str(error.value) == "Unrecognised metric name: FAIL."
classifier = bnmf_gibbs_optimised initUV = 'random' # Generate data (_, _, _, _, R) = generate_dataset(I, J, true_K, lambdaU, lambdaV, tau) M = numpy.ones((I, J)) #M = try_generate_M(I,J,fraction_unknown,attempts_M) # Run the line search. The priors lambdaU and lambdaV need to be a single value (recall K is unknown) priors = { 'alpha': alpha, 'beta': beta, 'lambdaU': lambdaU[0, 0] / 10, 'lambdaV': lambdaV[0, 0] / 10 } line_search = LineSearch(classifier, values_K, R, M, priors, initUV, iterations, restarts) line_search.search(burn_in, thinning) # Plot the performances of all three metrics - but MSE separately metrics = ['loglikelihood', 'BIC', 'AIC', 'MSE'] for metric in metrics: plt.figure() plt.plot(values_K, line_search.all_values(metric), label=metric) plt.legend(loc=3) # Also print out all values in a dictionary all_values = {} for metric in metrics: all_values[metric] = line_search.all_values(metric) print "all_values = %s" % all_values