예제 #1
0
def predict_banknote(data: BankNote):
    data = data.dict()
    variance = data['variance']
    skewness = data['skewness']
    curtosis = data['curtosis']
    entropy = data['entropy']
    prediction = classifier.predict([[variance, skewness, curtosis, entropy]])
    if (prediction[0] > 0.5):
        prediction = "Fake note"
    else:
        prediction = "Its a Bank note"
    return {'prediction': prediction}
예제 #2
0
async def predict(data: BankNote):
    data = data.dict()
    variance = data['variance']
    skewness = data['skewness']
    curtosis = data['curtosis']
    entropy = data['entropy']
    predictedValue = model.predict_proba(
        [[variance, skewness, curtosis, entropy]])[:, 1][0]
    if predictedValue < 0.5:
        prediction = "Fake Note"
    else:
        prediction = "Authentic Bank Note"
    return {'prediction': prediction}
def predict_banknote(data:BankNote):
    data = data.dict()
    print(data)
    variance = data['variance']
    skewness = data['skewness']
    curtosis = data['curtosis']
    entropy = data['entropy']
    print(classifier.predict([[variance,skewness,curtosis,entropy]]))
    prediction = classifier.predict([[variance,skewness,curtosis,entropy]])
    if(prediction[0]>0.5):
        prediction = 'Fake Note'
    else:
        prediction = 'Genuine Bank Note'
    return {'prediction':prediction}
예제 #4
0
def pred_bank(
    data: BankNote
):  #capture the i/p features needed from the class object and assign to an object data
    data = data.dict()
    print(data)
    variance = data["variance"]
    print(variance)
    skewness = data["skewness"]
    curtosis = data['curtosis']
    entropy = data["entropy"]
    print(classifier.predict([[variance, skewness, curtosis, entropy]]))
    prediction = classifier.predict([[variance, skewness, curtosis, entropy]])
    if prediction[0] > 0.5:
        prediction = "Fake_Note"
    else:
        prediction = "Genuine Note"
    return {"prediction": prediction}