예제 #1
0
def tree_sort(li_sort):
    root = tr.Node(li_sort[0])
    for i in range(1, len(li_sort)):
        tr.insert(root, tr.Node(li_sort[i]))
    li_sort = []
    inOrderTraversal(root, li_sort)
    return li_sort
예제 #2
0
def testManyInsert():
    _tree = BST()
    _tree.insert(25)
    _tree.insert(10)
    _tree.insert(30)
    _tree.insert(35)

    assert _tree.exists(10)
    assert _tree.exists(25)
    assert _tree.exists(30)
    assert _tree.exists(35)
예제 #3
0
def generateBST(list,tree = None):
	if tree == None:
		tree = BST()
	if len(list) == 0:
		return tree
	else:
		mid = len(list)/2
		mNum = list[mid]
		tree.insert(mNum)
		tree = generateBST(list[:mid],tree)
		tree = generateBST(list[mid+1:],tree)
		return tree
예제 #4
0
class TestTree(unittest.TestCase):
    '''tests for BST'''
    def setUp(self):
        self.BST = BST(NodeType=BSTNode)

    def test_single_insert(self):
        self.BST.insert(50)
        self.assertEqual(self.BST.root.key, 50)
        self.assertEqual(self.BST.root.parent, None)

    def test_structure(self):
        '''    .50.
             /     \
            25      75
            /\     / \
          10  30  60  90
         '''
        def test_structure_for_type(tree_type):
            tree_type.insert(50)
            tree_type.insert(25)
            tree_type.insert(75)
            tree_type.insert(30)
            tree_type.insert(10)
            tree_type.insert(90)
            tree_type.insert(60)
            root = tree_type.root
            self.assertEqual(root.key, 50)
            self.assertEqual(root.parent, None)
            self.assertEqual(root.left.key, 25)
            self.assertEqual(root.left.parent.key, 50)
            self.assertEqual(root.left.left.key, 10)
            self.assertEqual(root.left.left.parent.key, 25)
            self.assertEqual(root.left.right.key, 30)
            self.assertEqual(root.left.right.parent.key, 25)
            self.assertEqual(root.right.key, 75)
            self.assertEqual(root.right.parent.key, 50)
            self.assertEqual(root.right.left.key, 60)
            self.assertEqual(root.right.left.parent.key, 75)
            self.assertEqual(root.right.right.key, 90)
            self.assertEqual(root.right.right.parent.key, 75)

        test_structure_for_type(self.BST)
예제 #5
0
파일: App.py 프로젝트: familysimpson/Python
from Node import Node;
from BinarySearchTree import BST;

bst = BST();

bst.insert(12);
bst.insert(10);
bst.insert(-2);
bst.insert(1);

bst.traverseInOrder();

print(bst.getMin());

bst.remove(10);

bst.traverseInOrder();
예제 #6
0
from BinarySearchTree import BST
from Node import Node

tree = BST()
tree.setRoot(5)
tree.insert(3)
tree.insert(8)
tree.insert(4)
tree.insert(6)
tree.insert(2)
tree.insert(7)
print(tree.getPreOrder())
print(tree.getInOrder())
print(tree.getPostOrder())
'''
Given a BST and a valid range of keys, remove nodes
from the BST that have keys outside that range.
'''


def truncate(root, low, high):
    if root is None:
        return root
    
    root.left = truncate(root.left, low, high)
    root.right = truncate(root.right, low, high)

    if root.val > high:
        root = root.left
    elif root.val < low:
        root = root.right

    return root

bst = BST()
keys = [15, 10, 20, 8, 12, 16, 25]

for key in keys:
    bst.insert(key)

bst.preorder(bst.root)
print()
truncate(bst.root, 9, 12)
bst.preorder(bst.root)
예제 #8
0
def __create_tree():
    _tree = BST()
    _tree.insert(7)
    _tree.insert(5)
    _tree.insert(3)
    _tree.insert(1)
    _tree.insert(4)
    _tree.insert(6)
    _tree.insert(12)
    _tree.insert(9)
    _tree.insert(8)
    _tree.insert(10)
    _tree.insert(15)
    _tree.insert(13)
    _tree.insert(17)

    return _tree
예제 #9
0
def testOneInsert():
    _tree = BST()
    _tree.insert(30)

    assert _tree.exists(30)
예제 #10
0
def testRemoveRootOne():
    _tree = BST()
    _tree.insert(7)
    _tree.remove(7)

    assert _tree.is_empty()
예제 #11
0
#!/usr/bin/python

from BinarySearchTree import BST,Node
from LinkedList import LinkedList,Node

btree = BST()
btree.insert(8)
btree.insert(4)
btree.insert(3)
btree.insert(10)
btree.insert(9)
btree.insert(13)
btree.insert(11)
btree.insert(15)
btree.insert(16)

#btree.postorder()


class solution():
	list = []
	def traverse(self,tree):
		if tree.root:
			self.findnodes(tree.root, 0)
			return self.list
		else:
			return None

	def findnodes(self,node,level):
		if len(self.list) < level+1:
			ll = LinkedList()
예제 #12
0
파일: App.py 프로젝트: pinik420/python
# bst.traverseInOrder()

# bst.remove(10)
# print ("\n")
# bst.traverseInOrder()
# print ("\n")

while 1:
    b = input(
        " 1. Add number to binarytree \n 2. Remove number \n 3. Print binarytree \n 4. Print Max \n 5. Print Min \n 6. Exit \n Enter your choice: "
    )

    if b == 1:
        c = input("\n Enter the number: ")
        bst.insert(c)
    elif b == 2:
        c = input("Enter the number you want to remove: ")
        bst.remove(c)
    elif b == 3:
        bst.traverseInOrder()

    elif b == 4:
        print(bst.getMax())
    elif b == 5:
        print(bst.getMin())

    elif b == 6:
        exit()
    else:
        print("Enter a valid choice!!")
# For passing DS

from BinarySearchTree import BST;

bst = BST()

print("--- Prints the entire insert in ascending order ---")
bst.insert(12)
bst.insert(10)
bst.insert(-2)
bst.insert(1)
# Let's order the nodes/values
bst.traverseInOrder()

print("--- Testing Remove Method---")
# Let's try to remove
bst.remove(10)
bst.traverseInOrder()

# print("--- Testing getMax Method---")
# print(bst.getMax())

print("--- Testing getMin Method---")
print(bst.getMin())
예제 #14
0
def create_tree():
    b = BST()

    b.insert(5)
    b.insert(3)
    b.insert(4)
    b.insert(2)
    b.insert(3.5)
    b.insert(10)
    b.insert(8)
    b.insert(7)
    b.insert(11)

    return b
예제 #15
0
from BinarySearchTree import BST, Node

if __name__ == '__main__':
    myItems = [5, 1, 8, 2, 0.5, 6, 7]
    bst = BST()
    for el in myItems:
        bst.insert(el)
    bst.preOrder(bst.root)
    print(' ')
    bst.postOrder(bst.root)
    print(' ')
    bst.inOrder(bst.root)
    head = bst.bstToDll(bst.root)