예제 #1
0
def logConfidence( x, R, clip=0 ):
    """
    Estimate the probability of x NOT beeing a random observation from a
    lognormal distribution that is described by a set of random values.

    @param x: observed value
    @type  x: float
    @param R: sample of random values
    @type  R: [float]
    @param clip: clip zeros at this value  0->don't clip (default: 0)
    @type  clip: float

    @return: confidence that x is not random, median of random distr.
    @rtype: (float, float)
    """
    if clip and 0 in R:
        R = N0.clip( R, clip, max( R ) )
    if clip and x == 0:
        x = clip

    ## remove 0 instead of clipping
    R = N0.compress( R, R )
    if x == 0:
        return 0, 0

    ## get mean and stdv of log-transformed random sample
    alpha = N0.average( N0.log( R ) )

    n = len( R )

    beta = N0.sqrt(N0.sum(N0.power(N0.log( R ) - alpha, 2)) / (n - 1.))

    return logArea( x, alpha, beta ), logMedian( alpha )
예제 #2
0
    def pairwiseRmsd( self, aMask=None, noFit=0 ):
        """
        Calculate rmsd between each 2 coordinate frames.

        @param aMask: atom mask
        @type  aMask: [1|0]
        @return: frames x frames array of float
        @rtype: array
        """
        frames = self.frames

        if aMask is not None:
            frames = N0.compress( aMask, frames, 1 )

        result = N0.zeros( (len( frames ), len( frames )), N0.Float32 )

        for i in range(0, len( frames ) ):

            for j in range( i+1, len( frames ) ):
                if noFit:
                    d = N0.sqrt(N0.sum(N0.power(frames[i]-frames[j], 2), 1))
                    result[i,j] = result[j,i] = N0.sqrt( N0.average(d**2) )

                else:
                    rt, rmsdLst = rmsFit.match( frames[i], frames[j], 1 )
                    result[i,j] = result[j,i] = rmsdLst[0][1]

        return result
예제 #3
0
 def __distances( self, point, xyz=None ):
     """
     point - 3 x 1 array of float; point of origin
     xyz   - 3 x n array of float; coordinates, if None -- take model atoms
     -> distances of all atoms to given point
     """
     if xyz is None:
         xyz = self.model.getXyz()
     return N0.sqrt( N0.sum( N0.power( xyz - point, 2), 1 ) )
예제 #4
0
 def __distances(self, point, xyz=None):
     """
     point - 3 x 1 array of float; point of origin
     xyz   - 3 x n array of float; coordinates, if None -- take model atoms
     -> distances of all atoms to given point
     """
     if xyz is None:
         xyz = self.model.getXyz()
     return N0.sqrt(N0.sum(N0.power(xyz - point, 2), 1))
예제 #5
0
    def hmmEmm2Prob(self, nullEmm, emmScore):
        """
        Convert HMM profile emmisiion scores into emmission probabilities

        @param nullEmm: null scores
        @type  nullEmm: array
        @param emmScore: emmission scores
        @type  emmScore: array

        @return: null and emmission probabilities, for each amino acid
                 in each position
        @rtype:  array( len_seq x 20 ), array( 1 x 20 )    
        """
        ## Null probabilities: prob = 2 ^ (nullEmm / 1000) * 1/len(alphabet)
        nullProb = N0.power(2, N0.array(nullEmm) / 1000.0) * (1. / 20)

        ## Emmission probabilities: prob = nullProb 2 ^ (nullEmm / 1000)
        ## see http://www.ebc.ee/WWW/hmmer2-html/node26.html
        emmProb = nullProb * N0.power(2, (emmScore / 1000.0))

        return emmProb, nullProb
예제 #6
0
파일: Hmmer.py 프로젝트: graik/biskit
    def hmmEmm2Prob( self, nullEmm, emmScore ):
        """
        Convert HMM profile emmisiion scores into emmission probabilities

        @param nullEmm: null scores
        @type  nullEmm: array
        @param emmScore: emmission scores
        @type  emmScore: array

        @return: null and emmission probabilities, for each amino acid
                 in each position
        @rtype:  array( len_seq x 20 ), array( 1 x 20 )    
        """
        ## Null probabilities: prob = 2 ^ (nullEmm / 1000) * 1/len(alphabet)
        nullProb = N0.power( 2, N0.array( nullEmm )/1000.0 )*(1./20)

        ## Emmission probabilities: prob = nullProb 2 ^ (nullEmm / 1000)
        ## see http://www.ebc.ee/WWW/hmmer2-html/node26.html
        emmProb = nullProb * N0.power( 2, ( emmScore/1000.0) )

        return emmProb, nullProb
예제 #7
0
    def error(self, msm, d2):
        """
        @param msm: membership matrix
        @type  msm: array('f')
        @param d2: distance from data to the centers
        @type  d2: array('f')

        @return: weighted error 
        @rtype: float
        """
        p = N0.power(msm, self.w)
        product = N0.dot(p, N0.transpose(d2))
        return N0.trace(product)
예제 #8
0
    def rmsd_res(self, coord1, coord2):
        """
        Calculate the rsmd on residue level for c-alpha between a
        model and its reference.

        @param coord1: first set of coordinates
        @type  coord1: array
        @param coord2: second set of coordinates
        @type  coord2: array

        @return: rmsd_res: rmsd per c-alpha
        @rtype: [float]
        """
        rmsd_res = []

        for i in range(len(coord1)):
            rmsd = N0.sqrt( (N0.power(coord1[i][0]-coord2[i][0],2) +  \
                            N0.power(coord1[i][1]-coord2[i][1],2 )+ \
                            N0.power(coord1[i][2]-coord2[i][2],2 )))
            rmsd_res.append(rmsd)

        return rmsd_res
예제 #9
0
파일: Benchmark.py 프로젝트: graik/biskit
    def rmsd_res(self, coord1, coord2):
        """
        Calculate the rsmd on residue level for c-alpha between a
        model and its reference.

        @param coord1: first set of coordinates
        @type  coord1: array
        @param coord2: second set of coordinates
        @type  coord2: array

        @return: rmsd_res: rmsd per c-alpha
        @rtype: [float]
        """
        rmsd_res = []

        for i in range( len(coord1) ):
            rmsd = N0.sqrt( (N0.power(coord1[i][0]-coord2[i][0],2) +  \
                            N0.power(coord1[i][1]-coord2[i][1],2 )+ \
                            N0.power(coord1[i][2]-coord2[i][2],2 )))
            rmsd_res.append(rmsd)

        return rmsd_res
예제 #10
0
    def getFluct_global( self, mask=None ):
        """
        Get RMS of each atom from it's average position in trajectory.
        The frames should be superimposed (fit() ) to a reference.

        @param mask: N x 1 list/Numpy array of 0|1, (N=atoms),
                     atoms to be considered.
        @type  mask: [1|0]

        @return: Numpy array ( N_unmasked x 1 ) of float.
        @rtype: array
        """
        frames = self.frames
        if mask is not None:
            frames = N0.compress( mask, frames, 1 )

        ## mean position of each atom in all frames
        avg = N0.average( frames )

        return N0.average(N0.sqrt(N0.sum(N0.power(frames - avg, 2), 2) ))
예제 #11
0
파일: rmsFit.py 프로젝트: tybiot/biskit
def rowDistances(x, y):
    """
    Calculate the distances between the items of two arrays (of same shape)
    after least-squares superpositioning.

    @param x: first set of coordinates
    @type  x: array('f')
    @param y: second set of coordinates
    @type  y: array('f')  

    @return: array( len(x), 'f' ), distance between x[i] and y[i] for all i
    @rtype: array
    """
    ## find transformation for best match
    r, t = findTransformation(x, y)

    ## transform coordinates
    z = N0.dot(y, N0.transpose(r)) + t

    ## calculate row distances
    return N0.sqrt(N0.sum(N0.power(x - z, 2), 1))
예제 #12
0
    def pca( self, atomMask=None, frameMask=None, fit=1 ):
        """
        Calculate principal components of trajectory frames.

        @param atomMask: 1 x N_atoms, [111001110..] atoms to consider
                         (default: all)
        @type  atomMask: [1|0]
        @param frameMask: 1 x N_frames, [001111..] frames to consider
                          (default all )
        @type  frameMask: [1|0]

        @return: (N_frames x N_frames), (1 x N_frames),
                 projection of each frame in PC space, eigenvalue of each PC
        @rtype: array, array, array
        """
        if frameMask is None: frameMask = N0.ones( len( self.frames ), N0.Int32 )

        if atomMask is None: atomMask = N0.ones(self.getRef().lenAtoms(),
                                               N0.Int32)

        if fit:
            self.fit( atomMask )

        refxyz = N0.average( self.frames, 0 )

        data = N0.compress( frameMask, self.frames, 0 )

        data = data - refxyz

        data = N0.compress( atomMask, data, 1 )

        ## reduce to 2D array
        data = N0.array( map( N0.ravel, data ) )

        V, L, U = LA.svd( data )

        return U, V * L, N0.power(L, 2)
예제 #13
0
def logConfidence(x, R, clip=1e-32):
    """
    Estimate the probability of x NOT beeing a random observation from a
    lognormal distribution that is described by a set of random values.
    The exact solution to this problem is in L{Biskit.Statistics.lognormal}.

    @param x: observed value
    @type  x: float
    @param R: sample of random values; 0 -> don't clip (default: 1e-32)
    @type  R: [float]
    @param clip: clip zeros at this value
    @type  clip: float

    @return:  confidence that x is not random, mean of random distrib.
    @rtype: (float, float)
    """
    if clip and 0 in R:
        R = N0.clip(R, clip, max(R))
    ## get mean and stdv of log-transformed random sample
    mean = N0.average(N0.log(R))

    n = len(R)

    stdv = N0.sqrt(N0.sum(N0.power(N0.log(R) - mean, 2)) / (n - 1.))

    ## create dense lognormal distribution representing the random sample
    stop = max(R) * 50.0
    step = stop / 100000
    start = step / 10.0

    X = [(v, p_lognormal(v, mean, stdv)) for v in N0.arange(start, stop, step)]

    ## analyse distribution
    d = Density(X)

    return d.findConfidenceInterval(x * 1.0)[0], d.average()
예제 #14
0
 def calc_membership_matrix(self, d2):
     ## remove 0s (if a cluster center is exactly on one item)
     d2 = N0.clip( d2, N0.power(1e200, 1-self.w), 1e300 )
     q = N0.power(d2, 1. / (1. - self.w))
     return q / N0.sum(q)
예제 #15
0
파일: rmsFit.py 프로젝트: tybiot/biskit
def match(x, y, n_iterations=1, z=2, eps_rmsd=0.5, eps_stdv=0.05):
    """
    Matches two arrays onto each other, while iteratively removing outliers.
    Superimposed array y would be C{ N0.dot(y, N0.transpose(r)) + t }.

    @param n_iterations: number of calculations::
                           1 .. no iteration 
                           0 .. until convergence
    @type  n_iterations: 1|0
    @param z: number of standard deviations for outlier definition (default: 2)
    @type  z: float
    @param eps_rmsd: tolerance in rmsd (default: 0.5)
    @type  eps_rmsd: float
    @param eps_stdv: tolerance in standard deviations (default: 0.05)
    @type  eps_stdv: float

    @return: (r,t), [ [percent_considered, rmsd_for_it, outliers] ]
    @rtype: (array, array), [float, float, int]
    """
    iter_trace = []

    rmsd_old = 0
    stdv_old = 0

    n = 0
    converged = 0

    mask = N0.ones(len(y), N0.Int32)

    while not converged:

        ## find transformation for best match
        r, t = findTransformation(N0.compress(mask, x, 0),
                                  N0.compress(mask, y, 0))

        ## transform coordinates
        xt = N0.dot(y, N0.transpose(r)) + t

        ## calculate row distances
        d = N0.sqrt(N0.sum(N0.power(x - xt, 2), 1)) * mask

        ## calculate rmsd and stdv
        rmsd = N0.sqrt(N0.average(N0.compress(mask, d)**2))
        stdv = MU.SD(N0.compress(mask, d))

        ## check conditions for convergence
        d_rmsd = abs(rmsd - rmsd_old)
        d_stdv = abs(1 - stdv_old / stdv)

        if d_rmsd < eps_rmsd and d_stdv < eps_stdv:
            converged = 1
        else:
            rmsd_old = rmsd
            stdv_old = stdv

        ## store result
        perc = round(float(N0.sum(mask)) / float(len(mask)), 2)

        ## throw out non-matching rows
        mask = N0.logical_and(mask, N0.less(d, rmsd + z * stdv))
        outliers = N0.nonzero(N0.logical_not(mask))
        iter_trace.append([perc, round(rmsd, 3), outliers])

        n += 1

        if n_iterations and n >= n_iterations:
            break

    return (r, t), iter_trace
예제 #16
0
    def getFluct_local( self, mask=None, border_res=1,
                        left_atoms=['C'], right_atoms=['N'], verbose=1 ):
        """
        Get mean displacement of each atom from it's average position after
        fitting of each residue to the reference backbone coordinates of itself
        and selected atoms of neighboring residues to the right and left.

        @param mask: N_atoms x 1 array of 0||1, atoms for which fluctuation
                     should be calculated
        @type  mask: array
        @param border_res: number of neighboring residues to use for fitting
        @type  border_res: int
        @param left_atoms: atoms (names) to use from these neighbore residues
        @type  left_atoms: [str]
        @param right_atoms: atoms (names) to use from these neighbore residues
        @type  right_atoms: [str]

        @return: Numpy array ( N_unmasked x 1 ) of float
        @rtype: array
        """
        if mask is None:
            mask = N0.ones( len( self.frames[0] ), N0.Int32 )

        if verbose: T.errWrite( "rmsd fitting per residue..." )

        residues = N0.nonzero( self.ref.atom2resMask( mask ) )

        ## backbone atoms used for fit
        fit_atoms_right = N0.nonzero( self.ref.mask( right_atoms ) )
        fit_atoms_left  = N0.nonzero( self.ref.mask( left_atoms ) )
        ## chain index of each residue
        rchainMap = N0.take( self.ref.chainMap(), self.ref.resIndex() )

        result = []

        for res in residues:

            i_res, i_border = self.__resWindow(res, border_res, rchainMap,
                                               fit_atoms_left, fit_atoms_right)

            try:
                if not len( i_res ): raise PDBError, 'empty residue'

                t_res = self.takeAtoms( i_res + i_border )

                i_center = range( len( i_res ) )

                mask_BB = t_res.ref.maskBB() * t_res.ref.maskHeavy()

                ## fit with border atoms ..
                t_res.fit( ref=t_res.ref, mask=mask_BB, verbose=0 )
                ## .. but calculate only with center residue atoms
                frames = N0.take( t_res.frames, i_center, 1 )

                avg = N0.average( frames )

                rmsd = N0.average(N0.sqrt(N0.sum(N0.power(frames - avg, 2), 2) ))

                result.extend( rmsd )

                if verbose: T.errWrite('#')

            except ZeroDivisionError:
                result.extend( N0.zeros( len(i_res), N0.Float32 ) )
                T.errWrite('?' + str( res ))

        if verbose: T.errWriteln( "done" )

        return result
예제 #17
0
    def fit( self, mask=None, ref=None, n_it=1,
             prof='rms', verbose=1, fit=1, **profInfos ):
        """
        Superimpose all coordinate frames on reference coordinates. Put rms
        values in a profile. If n_it > 1, the fraction of atoms considered
        for the fit is put into a profile called |prof|_considered
        (i.e. by default 'rms_considered').

        @param mask: atom mask, atoms to consider default: [all]
        @type  mask: [1|0]
        @param ref: use as reference, default: None, average Structure
        @type  ref: PDBModel
        @param n_it: number of fit iterations, kicking out outliers on the way
                     1 -> classic single fit, 0 -> until convergence
                     (default: 1)
        @type  n_it: int
        @param prof: save rms per frame in profile of this name, ['rms']
        @type  prof: str
        @param verbose: print progress info to STDERR (default: 1)
        @type  verbose: 1|0
        @param fit: transform frames after match, otherwise just calc rms
                    (default: 1)          
        @type  fit: 1|0
        @param profInfos: additional key=value pairs for rms profile info []
        @type profInfos: key=value
        """
        if ref is None:
            refxyz = N0.average( self.frames, 0 )
        else:
            refxyz = ref.getXyz()

        if mask is None:
            mask = N0.ones( len( refxyz ), N0.Int32 )

        refxyz = N0.compress( mask, refxyz, 0 )

        if verbose: T.errWrite( "rmsd fitting..." )

        rms = []          ## rms value of each frame
        non_outliers = [] ## fraction of atoms considered for rms and fit
        iterations = []   ## number of iterations performed on each frame

        for i in range(0, len( self.frames) ):

            xyz = self.frames[i]

            if n_it != 1:
                (r, t), rmsdList = rmsFit.match( refxyz,
                                                 N0.compress( mask, xyz, 0), n_it)
                iterations.append( len( rmsdList ) )
                non_outliers.append( rmsdList[-1][0] )

                xyz_transformed = N0.dot( xyz, N0.transpose(r)) + t

                rms += [ rmsdList[-1][1] ]

            else:
                r, t = rmsFit.findTransformation( refxyz,
                                                  N0.compress( mask, xyz, 0))

                xyz_transformed = N0.dot( xyz, N0.transpose(r)) + t

                d = N0.sqrt(N0.sum(N0.power( N0.compress(mask, xyz_transformed,0)\
                                          - refxyz, 2), 1))


                rms += [ N0.sqrt( N0.average(d**2) ) ]


            if fit:
                self.frames[i] = xyz_transformed.astype(N0.Float32)

            if verbose and i%100 == 0:
                T.errWrite( '#' )

        self.setProfile( prof, rms, n_iterations=n_it, **profInfos )

        if non_outliers:
            self.setProfile( prof+'_considered', non_outliers,
                             n_iterations=n_it,
                             comment='fraction of atoms considered for iterative fit' )

        if verbose: T.errWrite( 'done\n' )
예제 #18
0
 def calc_cluster_center(self, msm):
     p = N0.power(msm, self.w)
     ccenter = N0.transpose(N0.dot(p, self.data))
     return N0.transpose(ccenter / N0.sum(p, 1))
예제 #19
0
 def nonFuzzyIndex(self):
     p = N0.power(self.msm, self.w)
     return (self.n_cluster*N0.sum(N0.sum(p))-
             self.npoints)/(self.npoints*(self.n_cluster-1))
예제 #20
0
 def clusterPartitionCoefficient(self):
     return N0.sum(N0.power(self.msm, self.w), 1)/self.npoints