예제 #1
0
def double_fc_dropout(p0, p1, p2, repetitions):
    expanded_training_data, _, _ = CNN.load_data_shared(
        "/data/mnist_expanded.pkl.gz")
    nets = []
    for j in range(repetitions):
        print "\n\nTraining using a dropout network with parameters ", p0, p1, p2
        print "Training with expanded data, run num %s" % j
        net = Network([
            ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28),
                          filter_shape=(20, 1, 5, 5),
                          poolsize=(2, 2),
                          activation_fn=ReLU),
            ConvPoolLayer(image_shape=(mini_batch_size, 20, 12, 12),
                          filter_shape=(40, 20, 5, 5),
                          poolsize=(2, 2),
                          activation_fn=ReLU),
            FullyConnectedLayer(
                n_in=40 * 4 * 4, n_out=1000, activation_fn=ReLU, p_dropout=p0),
            FullyConnectedLayer(
                n_in=1000, n_out=1000, activation_fn=ReLU, p_dropout=p1),
            SoftmaxLayer(n_in=1000, n_out=10, p_dropout=p2)
        ], mini_batch_size)
        net.SGD(expanded_training_data, 40, mini_batch_size, 0.03,
                validation_data, test_data)
        nets.append(net)
    return nets
예제 #2
0
def expanded_data_double_fc(n=100):
    """n is the number of neurons in both fully-connected layers.  We'll
    try n=100, 300, and 1000.

    """
    expanded_training_data, _, _ = CNN.load_data_shared(
        "/data/mnist_expanded.pkl.gz")
    for j in range(3):
        print "Training with expanded data, %s neurons in two FC layers, run num %s" % (
            n, j)
        net = Network([
            ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28),
                          filter_shape=(20, 1, 5, 5),
                          poolsize=(2, 2),
                          activation_fn=ReLU),
            ConvPoolLayer(image_shape=(mini_batch_size, 20, 12, 12),
                          filter_shape=(40, 20, 5, 5),
                          poolsize=(2, 2),
                          activation_fn=ReLU),
            FullyConnectedLayer(n_in=40 * 4 * 4, n_out=n, activation_fn=ReLU),
            FullyConnectedLayer(n_in=n, n_out=n, activation_fn=ReLU),
            SoftmaxLayer(n_in=n, n_out=10)
        ], mini_batch_size)
        net.SGD(expanded_training_data,
                60,
                mini_batch_size,
                0.03,
                validation_data,
                test_data,
                lmbda=0.1)
예제 #3
0
def dbl_conv_relu():
    for lmbda in [0.0, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0]:
        for j in range(3):
            print "Conv + Conv + FC num %s, relu, with regularization %s" % (
                j, lmbda)
            net = Network([
                ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28),
                              filter_shape=(20, 1, 5, 5),
                              poolsize=(2, 2),
                              activation_fn=ReLU),
                ConvPoolLayer(image_shape=(mini_batch_size, 20, 12, 12),
                              filter_shape=(40, 20, 5, 5),
                              poolsize=(2, 2),
                              activation_fn=ReLU),
                FullyConnectedLayer(
                    n_in=40 * 4 * 4, n_out=100, activation_fn=ReLU),
                SoftmaxLayer(n_in=100, n_out=10)
            ], mini_batch_size)
            net.SGD(training_data,
                    60,
                    mini_batch_size,
                    0.03,
                    validation_data,
                    test_data,
                    lmbda=lmbda)
예제 #4
0
def omit_FC():
    for j in range(3):
        print "Conv only, no FC"
        net = Network([
            ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28),
                          filter_shape=(20, 1, 5, 5),
                          poolsize=(2, 2)),
            SoftmaxLayer(n_in=20 * 12 * 12, n_out=10)
        ], mini_batch_size)
        net.SGD(training_data, 60, mini_batch_size, 0.1, validation_data,
                test_data)
    return net
예제 #5
0
def shallow(n=3, epochs=60):
    nets = []
    for j in range(n):
        print "A shallow net with 100 hidden neurons"
        net = Network([
            FullyConnectedLayer(n_in=784, n_out=100),
            SoftmaxLayer(n_in=100, n_out=10)
        ], mini_batch_size)
        net.SGD(training_data, epochs, mini_batch_size, 0.1, validation_data,
                test_data)
        nets.append(net)
    return nets
예제 #6
0
def basic_conv(n=3, epochs=10):
    for j in range(n):
        print "Conv + FC architecture"
        net = Network([
            ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28),
                          filter_shape=(20, 1, 5, 5),
                          poolsize=(2, 2)),
            FullyConnectedLayer(n_in=20 * 12 * 12, n_out=100),
            SoftmaxLayer(n_in=100, n_out=10)
        ], mini_batch_size)
        net.SGD(training_data, epochs, mini_batch_size, 0.1, validation_data,
                test_data)
    return net
예제 #7
0
def dbl_conv(activation_fn=sigmoid):
    for j in range(3):
        print "Conv + Conv + FC architecture"
        net = Network([
            ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28),
                          filter_shape=(20, 1, 5, 5),
                          poolsize=(2, 2),
                          activation_fn=activation_fn),
            ConvPoolLayer(image_shape=(mini_batch_size, 20, 12, 12),
                          filter_shape=(40, 20, 5, 5),
                          poolsize=(2, 2),
                          activation_fn=activation_fn),
            FullyConnectedLayer(
                n_in=40 * 4 * 4, n_out=100, activation_fn=activation_fn),
            SoftmaxLayer(n_in=100, n_out=10)
        ], mini_batch_size)
        net.SGD(training_data, 60, mini_batch_size, 0.1, validation_data,
                test_data)
    return net