def load_model(): dir = os.getcwd() model_dir = dir + f'/Channel/encoder_16_VAE_1_epoch30.pth' model = Encoder() model.load_state_dict(torch.load(model_dir, map_location=device)) encoder_model = model.to(device) return encoder_model
def __init__(self, device): self.device = device self.prediction = Prediction(64, self.device) dir = os.getcwd() model_dir16 = dir + f'/Gaussian/generative_model/encoder_16_VAE_0.5_epoch30.pth' model16 = Encoder() model16.load_state_dict( torch.load(model_dir16, map_location=self.device), False) self.encoder_model16 = model16.to(self.device) self.encoder_model16.eval()
def __init__(self, device): self.device = device self.prediction = Prediction(64, self.device) dir = os.getcwd() model_dir16 = dir + f'/Channel/generative_model/encoder_16_VAE_1_epoch30.pth' model16 = Encoder() model16.load_state_dict( torch.load(model_dir16, map_location=self.device), False) self.encoder_model16 = model16.to(self.device) self.encoder_model16.eval() dir = os.getcwd() model_dir_16_32 = dir + f'/Channel/generative_model/encoder_16_32_VAE_1_0.7_epoch50.pth' model_16_32 = Encoder() model_16_32.load_state_dict( torch.load(model_dir_16_32, map_location=self.device), False) self.encoder_model_16_32 = model_16_32.to(self.device) self.encoder_model_16_32.eval()
def load_model(size): dir = os.getcwd() if size == 16: model_dir = dir+f'/Channel/encoder_16_VAE_1_epoch30.pth' model = Encoder() elif size == 32: model_dir = dir+f'/Channel/encoder_16_32_VAE_1_0.7_epoch50.pth' model = Encoder() model.load_state_dict(torch.load(model_dir, map_location=device)) encoder_model =model.to(device) return encoder_model
type=float, default=0.5, help="beta hyperparameter") args = parser.parse_args() dir = os.getcwd() directory = f'/Gaussian/experiments/experiments_64/latent256/beta_{args.beta_vae}' exp_dir = dir + directory + "/N{}_Bts{}_Eps{}_lr{}".\ format(args.n_train, args.batch_size, args.n_epochs, args.lr) output_dir = exp_dir + "/save_model" if not os.path.exists(output_dir): os.makedirs(output_dir) device = torch.device("cuda:2" if torch.cuda.is_available() else "cpu") encoder = Encoder() decoder = Decoder() encoder.to(device) decoder.to(device) print("number of parameters: {}".format(encoder._n_parameters() + decoder._n_parameters())) train_hdf5_file = os.getcwd() + \ f'/Gaussian/data/training_set_64_gaussian1_25000.hdf5' train_loader = load_data_1scale(train_hdf5_file, args.n_train, args.batch_size, singlescale=True) optimizer = torch.optim.Adam(itertools.chain(encoder.parameters(),
parser.add_argument("--sample-interval", type=int, default=5, help="interval between image sampling") parser.add_argument("--beta_vae", type=float, default=1, help="beta hyperparameter") args = parser.parse_args() dir = os.getcwd() directory = f'/Gaussian/experiments/experiments_16/latent16/beta_{args.beta_vae}' exp_dir = dir + directory + "/N{}_Bts{}_Eps{}_lr{}".\ format(args.n_train, args.batch_size, args.n_epochs, args.lr) output_dir = exp_dir + "/predictions" model_dir = exp_dir if not os.path.exists(output_dir): os.makedirs(output_dir) if not os.path.exists(model_dir): os.makedirs(model_dir) device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu") encoder = Encoder() decoder = Decoder() encoder.to(device) decoder.to(device) print("number of parameters: {}".format(encoder._n_parameters()+decoder._n_parameters())) train_hdf5_file = os.getcwd() + \ f'/Gaussian/data/training_set_16_gaussian.hdf5' test_hdf5_file = os.getcwd() + \ f'/Gaussian/data/test_set_16_gaussian.hdf5' train_loader = load_data_1scale(train_hdf5_file, args.n_train, args.batch_size,singlescale=True) with h5py.File(test_hdf5_file, 'r') as f: x_test = f['test'][()] x_test =x_test