def decision_spambase_set_no_libs(): """ Solution for HW1 prob 1 """ print('Homework 1 problem 1 - No Libraries - Regression Decision tree') print('Spambase Dataset') spam_data = utils.load_and_normalize_spam_data() test, train = utils.split_test_and_train(spam_data) print str(len(train)) + " # in training set <--> # in test " + str(len(test)) node = mytree.Node(np.ones(len(train))) branch_node(node, train, 5, 'is_spam') #node.show_children_tree() node.show_children_tree(follow=False) model = mytree.Tree(node) model.print_leaves() print 'Trained model error is : ' + str(model.error()) node.presence = np.ones(len(test)) test_node(node, test, 'is_spam') test_tree = mytree.Tree(node) prediction = test_tree.predict_obj() test_tree.print_leaves_test() print 'predict sum: ' + str(sum(prediction)) print 'MSE:' + str(test_tree.error_test()) [tp, tn, fp, fn] = mystats.get_performance_stats(test['is_spam'].as_matrix(), prediction) print 'TP: {}\tFP: {}\nTN: {}\tFN: {}'.format(tp, fp, tn, fn) print 'Accuracy: ' + str(mystats.compute_accuracy(tp,tn, fp,fn)) print 'MSE: ' + str(mystats.compute_MSE_arrays(prediction, test['is_spam']))
def regression_line_spam_no_libs(): """ Solution for HW1 prob 2 """ print('Homework 1 problem 2 - No Libraries - Regression Line') print('Spam Dataset') spam_data = utils.load_and_normalize_spam_data() test, train = utils.split_test_and_train(spam_data) columns = train.columns[:-1] Y_fit = mystats.linear_regression_points(train[columns], train['is_spam']) #print 'Y_fit' #print Y_fit #for i in range(0, len(Y_fit)): # print str(Y_fit[i]) + ' -- ' + str(train['is_spam'][i]) col_MSE = {} for i, col in enumerate(columns): col_fit = Y_fit[i] + Y_fit[-1] col_MSE[col] = mystats.compute_MSE_arrays(col_fit, train['is_spam']) print col_MSE RMSE = np.sqrt(col_MSE.values()) average_MSE = utils.average(col_MSE.values()) average_RMSE = utils.average(RMSE) print 'Average MSE: ' + str(average_MSE) print 'Average RMSE: ' + str(average_RMSE)
def decision_spambase_set(): """ Solution for HW1 prob 1 """ print('Homework 1 problem 1 - Regression Decision tree') print('Spambase Dataset') spam_data = utils.load_and_normalize_spam_data() test, train = utils.split_test_and_train(spam_data) print str(len(train)) + " # in training set <--> # in test " + str(len(test)) dt = train_decision_tree(train) predicted = test_decision_tree(dt, test) #print predicted #print test['is_spam'] error = mystats.calculate_binary_error(predicted, test['is_spam']) print 'Error: ' + str(error)
def q_1(): h_test, h_train = utils.load_and_normalize_housing_set() h_results = [] s_results = [] # h_results.append(dec_or_reg_tree(h_train, h_test, 'MEDV')) # MSE - 568 test- 448 # h_results.append(linear_reg_errors(h_train, h_test, 'MEDV')) # MSE - 27 test -14 # h_results.append(linear_reg_errors(h_train, h_test, 'MEDV', True)) # 24176 - 68289 # h_results.append(linear_gd(h_train, h_test, 'MEDV')) # works but MSE too low? .0022 - .0013 # h_results.append(logistic_gd(h_train, h_test, 'MEDV')) # 1.46e_13 - 1.17e+13 s_test, s_train = utils.split_test_and_train(utils.load_and_normalize_spam_data()) s_results.append(dec_or_reg_tree(s_train, s_test, "is_spam")) # works .845 - .86 s_results.append(linear_reg_errors(s_train, s_test, "is_spam")) # works .8609 - .903 s_results.append(linear_reg_errors(s_train, s_test, "is_spam", True)) # works .8416 - .8543 s_results.append(k_folds_linear_gd(s_train, s_test, "is_spam")) # does not work .6114 - .6114 s_results.append(logistic_gd(s_train, s_test, "is_spam")) # returns perfect... 1- 1 print_results_1(s_results, h_results)
def testLogisticGradient(): """ logistic gradient descent """ df_test, df_train = utils.split_test_and_train(utils.load_and_normalize_spam_data()) Y = 'is_spam' binary = utils.check_binary(df_train[Y]) model = gd.logistic_gradient(df_train, df_train[Y], .1, max_iterations=5) #print model #raw_input() predict = gd.predict(df_train, model, binary, True) print predict error_train = mystats.get_error(predict, df_train[Y], binary) #raw_input() predict = gd.predict(df_test, model, binary, True) print predict error_test = mystats.get_error(predict, df_test[Y], binary) print 'error train {} error_test {}'.format(error_train, error_test) return [error_train, error_test]