def build_genre_dict(): f_path = forhead_path + 'u.genre' f_content = read_file(f_path) genre = [line.split('|') for line in f_content] for g in genre: g[-1] = int(g[-1][:-1]) genre_dict = dict([g[-1], g[0]] for g in genre) return genre_dict
def build_rating_data(data_path): f_content = read_file(data_path) rating_data = list() for line in f_content: line_data = line.split(' ') rating_data.append( [int(line_data[0]), int(line_data[1]), float(line_data[2])]) return rating_data
def build_user_data(): f_path = forhead_path + 'u.user' f_content = read_file(f_path) user = [line.split('|')[:-1] for line in f_content] def format_user_data(line): line[0] = int(line[0]) line[1] = int(line[1]) return line user_data = map(format_user_data, user) return user_data
def build_item_data(): f_path = forhead_path + 'u.item' f_content = read_file(f_path) item = [line.split('|') for line in f_content] def format_item_data(line): line[-1] = line[-1].strip() genre = [int(g) for g in line[5:]] line = line[:3] line.append(genre) return line item_data = map(format_item_data, item) return item_data
def build_occupation_data(): f_path = forhead_path + 'u.occupation' f_content = read_file(f_path) occupation = [line[:-1] for line in f_content] return occupation
def build_ml_data(data_path): f_content = read_file(data_path) ml_data = [[int(i) for i in line.split('\t')] for line in f_content] return ml_data
def build_trust_data(): f_path = forhead_path + 'trust.txt' f_content = read_file(f_path) trust_data = [[int(i) for i in line.split(' ')] for line in f_content] return trust_data
def build_rating_data(data_path): f_content = read_file(data_path)[1:-1] rating_data = [[int(i) for i in line.split(' ')] for line in f_content] return rating_data