def pop_correlation_coefficient(data):
    x_data = CsvReader('Tests/Data/female_height.csv').data
    y_data = CsvReader('Tests/Data/male_height.csv').data
    x = pop_stand_dev(x_data)
    y = pop_stand_dev(y_data)
    divisor = multiplication(x, y)
    z = len(data)

    # Covariance calculation:
    a = subtraction(data, sampleMean)
    b = subtraction(data, population_mean)
    c = multiplication(a, b)
    covariance = division(z, (sum(c)))

    # Population Correlation Coefficient calculation:
    d = division(divisor, covariance)
    return d
예제 #2
0
def pop_correlation_coefficient(data_x, data_y):
    x = pop_stand_dev(data_x)
    y = pop_stand_dev(data_y)
    divisor = multiplication(x, y)

    # Covariance calculation:
    d = population_mean(data_x)
    e = population_mean(data_y)
    a = [(element - d) for element in data_x]
    b = [(element - e) for element in data_y]
    size = len(a)
    product = [a[i] * b[i] for i in range(size)]
    total = sum(product)
    covariance = division(size, total)

    # Population Correlation Coefficient calculation:
    d = division(divisor, covariance)
    return d
예제 #3
0
def median(data):
    data = [num for elem in data for num in elem]
    new_data = [float(x) for x in data]
    new_data = sorted(new_data)
    length = len(new_data)
    if length < 1:
        return None
    if length % 2 == 0:
        return division(2.0, addition(new_data[(length - 1) // 2], new_data[(length + 1) // 2]))
    else:
        return new_data[(length - 1) // 2]
예제 #4
0
def pop_correlation_coefficient(data):
    # x_data = CsvReader('Tests/Data/female_height.csv').data
    # y_data = CsvReader('Tests/Data/male_height.csv').data
    x_data = [num for elem in data for num in elem]
    y_data = [num for elem in data for num in elem]
    new_x_data = [float(x) for x in x_data]
    new_y_data = [float(x) for x in y_data]
    x = pop_stand_dev(new_x_data)
    y = pop_stand_dev(new_y_data)
    divisor = multiplication(x, y)
    z = len(new_x_data)

    # Covariance calculation:
    a = subtraction(new_x_data, population_mean(new_x_data))
    b = subtraction(new_y_data, population_mean(new_y_data))
    c = multiplication(a, b)
    covariance = division(z, (sum(c)))

    # Population Correlation Coefficient calculation:
    d = division(divisor, covariance)
    return d