예제 #1
0
파일: ttt2.py 프로젝트: geraybos/zjf_lx
def min60(time):
    min60_times = [1030, 1130, 1400, 1500]
    if time in min60_times:
        temp = time // 100 * 60 + time % 100 - 60
        temp = temp // 60 * 100 + temp % 60
        print(temp)
        sql = {'time': {'$gt': temp, '$lte': time}, 'date': Calendar.today()}
        curror = BaseModel('real_kline_min5').query(sql=sql)
        if curror.count():
            data = pd.DataFrame(list(curror))

            data = data.sort_values(by=['time'], ascending=True)
            data = data.groupby(by=['stock_code'], as_index=False).agg({
                'volume':
                'sum',
                'amount':
                'sum',
                'open':
                'first',
                'close':
                'last',
                'high':
                'max',
                'low':
                'min'
            })

            data['time'] = time
            data['date'] = Calendar.today()
            BaseModel('real_kline_min60').insert_batch(
                data.to_dict(orient='records'))
            print('min60 ok')


# min60(time=1030)
예제 #2
0
 def get_all_stock_code_info(cls, date=None, time=None, kline='kline_min5'):
     sql = analyzer('date = {} and time = {}'.format(date, time))
     data = pd.DataFrame(list(BaseModel(kline).query(sql)))
     if len(data) == 0:
         return pd.DataFrame()
     data['pro'] = data.close / data.open - 1
     #以上是把数据从数据库中取出
     #并且求出各个时刻的收益
     #注意,如果要求收益的计算方式close/pre_close-1,则close需要通过shift()调整
     data2 = None
     if time == 1500:
         #如果time是1500,需要把明天的第一根取出来计算
         x = Calendar.calc(analyzer('date = {}'.format(date))['date'],
                           1)['date']
         sql = analyzer('date = {} and time = {}'.format(
             str(x.year * 10000 + x.month * 100 + x.day), 935))
         data2 = pd.DataFrame(list(BaseModel(kline).query(sql)))
         if len(data2) == 0:
             return pd.DataFrame()
         data = pd.merge(data, data2, on='stock_code')
         data['profit'] = (data.close_y / data.close_x - 1)
         return data.loc[:, [
             'stock_code', 'date_x', 'time_x', 'profit', 'pro'
         ]]
     else:
         time_index = KlineBase.get_time_index(time)
         sql = analyzer('date = {} and time = {}'.format(date, time_index))
         data2 = pd.DataFrame(list(BaseModel(kline).query(sql)))
         if len(data2) == 0:
             return pd.DataFrame()
         data = pd.merge(data, data2, on='stock_code')
         data['profit'] = (data.close_y / data.close_x - 1)
         return data.loc[:, [
             'stock_code', 'date_x', 'time_x', 'profit', 'pro'
         ]]
예제 #3
0
def fun(stocks):
    # print(os.getpid(), stocks)
    kline = 'hk_kline_day'
    pixel = 64
    # path = "f://zjf/image/USA_boll_kline_day_test"
    interval = KlineInfo.get_interval(kline)
    detal = KlineInfo.get_detal(kline)
    tabel_name = "boll_" + kline
    # path = "f://zjf/image/ma_kline_min30_test"
    for sc in stocks:
        end_time = dt.datetime(2018, 6, 25)
        start_time = dt.datetime(2016, 1, 1)
        data = KlineData.read_data(code=sc,
                                   start_date=Calendar.calc(start_time,
                                                            -203)['date'],
                                   end_date=end_time,
                                   kline=kline,
                                   timemerge=True)
        if len(data) <= 200:
            continue
        data = CalBoll.cal_boll(data, interval)
        data = data.dropna()
        while end_time > dt.datetime(2016, 1, 1):
            data0 = data.tail(pixel)
            data0 = data0.reset_index(drop=True)
            profit = data0['profit']
            date = data0['date']
            data0 = CalBoll.data_normalization(data0, pixel)
            data0['date'] = date
            data0['profit'] = profit
            if len(data0) < pixel:
                break
            data0 = data0.reset_index(drop=True)
            profit = data0.profit.iloc[len(data0) - 1]
            date = data0.date.iloc[len(data0) - 1]
            if 'min' in kline:
                if abs(profit) > 0.11:
                    data = data[data.date < dt.datetime(
                        date.year, date.month, date.day)]
                    continue
            else:
                if abs(profit) > 0.1 * interval:
                    data = data[data.date < dt.datetime(
                        date.year, date.month, date.day)]
                    continue
            try:
                visualization.drow_boll_line(data=data0,
                                             profits=profit,
                                             date=date,
                                             code=sc,
                                             pixel=pixel,
                                             table_name=tabel_name)
            except Exception as e:
                pass
            data = data[
                data.date < dt.datetime(date.year, date.month, date.day)]
            end_time = date
    return 1
예제 #4
0
def fun(stocks):
    # print(os.getpid(), stocks)
    kline = 'hk_kline_day'
    table_name='MA_'+kline
    pixel=64
    interval = KlineInfo.get_interval(kline)
    for sc in stocks:
        end_time = dt.datetime(2018, 6, 25)
        start_time = dt.datetime(2016, 1, 1)
        data = KlineData.read_data(code=sc, start_date=Calendar.calc(start_time, -203)['date'], end_date=end_time,
                                   kline=kline, timemerge=True)
        if len(data) <= 200:
            continue
        data = CalMa.cal_ma(data, interval)
        data = data.dropna()
        print(sc)
        while end_time > dt.datetime(2016, 1, 1):
            data0 = data.tail(pixel)
            data0 = data0.reset_index(drop=True)
            profit = data0['profit']
            date = data0['date']
            price=data0.close.iloc[0]
            data0 = CalMa.data_normalization(data0,pixel=pixel)
            data0['date'] = date
            data0['profit'] = profit
            if len(data0) < pixel or price<2:
                break
            date = data0.date.iloc[len(data0) - 1]
            profit = data0.profit.iloc[len(data0) - 1]
            if 'min' in kline:
                    if abs(profit) > 0.11:
                        data = data[data.date < dt.datetime(date.year, date.month, date.day)]
                        continue
            else:
                if abs(profit) > 0.1*interval:
                    data = data[data.date < dt.datetime(date.year, date.month, date.day)]
                    continue
            data0 = data0.reset_index(drop=True)



            try:
                visualization.draw_ma_line(data=data0, profits=profit,
                                           date=date, code=sc,
                                           table_name=table_name,pixel=pixel)
            except Exception as e:
                print(e)
                pass
            data = data[data.date<dt.datetime(date.year,date.month,date.day)]
            end_time = date
    return 1
예제 #5
0
    def draw_rl_pic_for_day(cls, data, end_date):

        code3 = KlineBase.get_all_stock_code_info_for_day(
            start_date=Calendar.calc(end_date, -1)['date'], end_date=end_date)
        if len(code3) == 0:
            return pd.DataFrame()
        data = pd.merge(data, code3, on=['stock_code'])
        # data['pro'] =data.close_x/data.open_x-1
        pro = data.pro.mean()
        data = data[0:2500]
        arr = np.zeros((51, 51))
        y = 0
        for i, r in data.iterrows():
            if (i + 1) % 50 != 0:
                # print((i + 1) % 50)
                arr[y, i % 50] = r['pro']
            else:
                y = y + 1
                # print('y', y)
                arr[y, i % 50] = r['pro']
        proifit = data.profit.mean()
        if abs(proifit) < 0.005:
            return

        ax = sns.heatmap(arr, vmin=-0.03, vmax=0.03, cbar=False)
        # plt.matshow(arr, cmap='hot')
        ax.set_yticks([])
        ax.set_xticks([])
        # plt.show()
        # plt.showbar(False)
        if proifit >= 0:
            up = '/up'
        else:
            up = '/down'
        title = str(
            data.date_x.iloc[0])[0:10] + '_' + str(pro) + '_' + str(proifit)
        path = 'F:/zjf/images/hot_day/' + up + '/'
        File.check_file(path=path)
        file_name = path + title + '.png'
        plt.savefig(fname=file_name, format='png', dpi=50)
        plt.close()
        gc.collect()
예제 #6
0
def fun(stocks):
    # print(os.getpid(), stocks)
    kline = 'index_min5'
    pixel=54
    n=5
    count=2
    interval = KlineInfo.get_interval(kline=kline)
    detal=KlineInfo.get_detal(kline=kline)
    table_name='A_Volume_'+kline+'_version5'
    print(table_name)
    for sc in stocks:
        end_time = dt.datetime(2018, 8, 15)
        start_time = dt.datetime(2016, 1, 1)
        data = KlineData.read_data(code=sc, start_date=Calendar.calc(start_time, -203)['date'], end_date=end_time,
                                   kline=kline, timemerge=True)
        if len(data) <= 200 :
            continue
        data=CalMa.cal_profit(data,interval,detal)
        data=data.dropna()
        d = data.date.iloc[-1]
        data=data[data.date<=dt.datetime(d.year,d.month,d.day,9,55)]
        print(sc)
        while end_time > start_time:
            data0 = data.tail(pixel*4)
            amax=data0.volume.max()
            data0 = data0.tail(pixel)
            data0 = data0.reset_index(drop=True)
            profit = data0.profit.iloc[ - 1]
            profitself = data0.profit_self.iloc[- 1]
            date = data0['date']
            if len(data0) < pixel:
                break
            date2 = date.iloc[ - 6]
            date1 = date.iloc[ - 1]
            data0=CalMa.data_normalization_volume2(data0,pixel=pixel+n*count,amax=amax)
            if 'min' in kline:
                if 'A' in table_name:
                    if date1.hour != 9 and date1.minute!=55:
                        data = data[data.date <= dt.datetime(date2.year, date2.month, date2.day, 9, 55)]
                        break
                if abs(profit) > 0.11 or abs(profitself)>0.097:
                    data = data[data.date <= dt.datetime(date2.year, date2.month, date2.day, 9, 55)]
                    continue
            else:
                if abs(profit) > 0.1 * interval:
                    data = data[data.date <= dt.datetime(date2.year, date2.month, date2.day, 9, 55)]
                    continue
                if 'A' in table_name:
                    if abs(profitself) > 0.097:
                        data = data[data.date <= dt.datetime(date2.year, date2.month, date2.day, 9, 55)]
                        print(sc, str(profitself) + '_' + str(date))
                        continue
            try:
                visualization.draw_volume(data=data0, profits=profit,
                                          date=date1, code=sc,
                                          table_name=table_name, pixel=pixel, n=n,
                                          count=count)
                pass
            except Exception as e:
                print(e)
                pass
            data = data[data.date <= dt.datetime(date2.year, date2.month, date2.day,9,55)]
            end_time = date2

    return 1
예제 #7
0
def fun(stocks):
    # print(os.getpid(), stocks)
    kline = 'index_min5'
    pixel = 128
    n = 0
    count = 0
    hour = 9
    minute = 55
    off = 203
    interval = KlineInfo.get_interval(kline=kline)
    detal = KlineInfo.get_detal(kline=kline)
    table_name = 'A_MA_index_min5_time955_pixel128'
    print(table_name)
    for sc in stocks:
        end_time = dt.datetime(2018, 8, 10)
        start_time = dt.datetime(2016, 1, 1)
        data = KlineData.read_data(code=sc,
                                   start_date=Calendar.calc(start_time,
                                                            -off)['date'],
                                   end_date=end_time,
                                   kline=kline,
                                   timemerge=True)
        if len(data) <= 200:
            continue
        data = CalMa.cal_ma(data=data, interval=interval, detal=detal)
        data = data.dropna()
        d = data.date.iloc[-1]
        data = data[
            data.date <= dt.datetime(d.year, d.month, d.day, hour, minute)]
        print(sc)
        while end_time > start_time:
            # print(sc,dt.datetime.now())
            data0 = data.tail(pixel)
            data0 = data0.reset_index(drop=True)
            profit = data0['profit']
            profit_self = data0['profit_self']
            date = data0['date']
            # amin, amax = data0.low.min(), data0.high.max()
            if len(data0) < pixel:
                break
            date2 = date.iloc[pixel - interval - 1]
            date1 = date.iloc[pixel - 1]
            data0 = CalMa.data_normalization_ok(data0, pixel=pixel + n * count)
            profit = profit.iloc[pixel - 1]
            profitself = profit_self.iloc[pixel - 1]
            profit_relative = 0
            if 'min' in kline:
                if 'A' in table_name:
                    if date1.hour != hour and date1.minute != minute:
                        data = data[data.date <= dt.datetime(
                            date2.year, date2.month, date2.day, hour, minute)]
                        break
                if abs(profit) > 0.11 or abs(profitself) > 0.097:
                    data = data[data.date <= dt.datetime(
                        date2.year, date2.month, date2.day, hour, minute)]
                    continue
            else:
                if abs(profit) > 0.1 * interval:
                    data = data[data.date <= dt.datetime(
                        date2.year, date2.month, date2.day, hour, minute)]
                    continue
                if 'A' in table_name:
                    if abs(profitself) > 0.097:
                        data = data[data.date <= dt.datetime(
                            date2.year, date2.month, date2.day, hour, minute)]
                        print(sc, str(profitself) + '_' + str(date))
                        continue
            try:
                visualization.draw_ma_line3(data=data0,
                                            profits=profit,
                                            date=date1,
                                            code=sc,
                                            table_name=table_name,
                                            pixel=pixel,
                                            n=n,
                                            profit_relative=profit_relative,
                                            count=count)

                pass
            except Exception as e:
                print(e)
                pass
            data = data[data.date <= dt.datetime(date2.year, date2.month,
                                                 date2.day, hour, minute)]
            end_time = date2

    return 1
예제 #8
0
def fun(stocks):
    # print(os.getpid(), stocks)
    kline = 'usa_kline_day'
    pixel = 64
    length = pixel * 2
    interval = KlineInfo.get_interval(kline=kline)
    off = KlineInfo.get_off(kline=kline)
    table_name = 'MACD_and_MA_' + kline
    print(table_name)
    for sc in stocks:
        print(os.getpid(), sc)
        end_time = dt.datetime(2018, 6, 20)
        start_time = dt.datetime(2015, 1, 1)
        data = KlineData.read_data(code=sc,
                                   start_date=Calendar.calc(start_time,
                                                            -off)['date'],
                                   end_date=end_time,
                                   kline=kline,
                                   timemerge=True)
        if len(data) <= (off - 20):
            continue
        data = calculate.calculate_data(data, interval)
        # data = data.sort_values(by=['date'], ascending=True)
        data = data.dropna()
        # data = data[0:len(data) - interval]

        while end_time > dt.datetime(2016, 1, 5):
            # print(sc,dt.datetime.now())
            data0 = data.tail(length)
            data0 = data0.reset_index(drop=True)
            profit = data0['profit']
            date = data0['date']
            data0 = calculate.data_normalization(data=data0,
                                                 pixel=pixel,
                                                 length=length)
            # print(sc, dt.datetime.now())
            data0['date'] = date
            data0['profit'] = profit
            if len(data0) < length:
                break
            data0 = data0.reset_index(drop=True)
            profit = data0.profit.iloc[length - 1]
            date = data0.date.iloc[length - 1]
            if 'min' in kline:
                if 'A' in table_name:
                    if date.hour != 15:
                        data = data[data.date < dt.datetime(
                            date.year, date.month, date.day)]
                        break
                if abs(profit) > 0.11:
                    data = data[data.date < dt.datetime(
                        date.year, date.month, date.day)]
                    continue
            else:
                if abs(profit) > 0.1 * interval:
                    data = data[data.date < dt.datetime(
                        date.year, date.month, date.day)]
                    continue

            # print(sc, dt.datetime.now())
            try:
                visualization.draw_macd_and_ma(data=data0,
                                               profits=profit,
                                               date=date,
                                               code=sc,
                                               table_name=table_name,
                                               pixel=pixel,
                                               length=length)
                pass
            except Exception as e:
                print(e)
                pass
            data = data[
                data.date < dt.datetime(date.year, date.month, date.day)]
            end_time = date
    return 1
예제 #9
0
def fun(stocks):
    # print(os.getpid(), stocks)
    kline = 'hk_kline_min30'
    pixel = 64
    table_name = 'MACD_' + kline
    print(table_name)
    interval = KlineInfo.get_interval(kline=kline)
    # detal= KlineInfo.get_detal(kline=kline)
    # path = "//DESKTOP-4JKCMO0/zjf1/H_macd_kline_day"
    # path = "f:/zjf/image/macd_kline_day_test"
    # File.check_file(path=path)
    for sc in stocks:
        end_time = dt.datetime(2018, 6, 20)
        start_time = dt.datetime(2015, 1, 1)
        data = KlineData.read_data(code=sc,
                                   start_date=Calendar.calc(start_time,
                                                            -203)['date'],
                                   end_date=end_time,
                                   kline=kline,
                                   timemerge=True)
        if len(data) <= 200:
            continue
        data = CalMacd.cal_macd(data, interval)
        data = data.sort_values(by=['date'], ascending=True)
        data = data.dropna()
        # data = data[0:len(data) - interval]
        print(sc)
        while end_time > dt.datetime(2016, 1, 5):
            # print(sc,dt.datetime.now())
            data0 = data.tail(pixel)
            data0 = data0.reset_index(drop=True)
            profit = data0['profit']
            date = data0['date']
            data0 = CalMacd.data_normalization(data0, pixel=pixel)
            # print(sc, dt.datetime.now())
            data0['date'] = date
            data0['profit'] = profit
            if len(data0) < pixel:
                break
            data0 = data0.reset_index(drop=True)
            profit = data0.profit.iloc[pixel - 1]
            date = data0.date.iloc[pixel - 1]
            if 'min' in kline:
                if abs(profit) > 0.11:
                    data = data[data.date < dt.datetime(
                        date.year, date.month, date.day)]
                    end_time = date
                    continue
            else:
                if abs(profit) > 0.1 * interval:
                    data = data[data.date < dt.datetime(
                        date.year, date.month, date.day)]
                    end_time = date
                    continue
            # print(sc, dt.datetime.now())
            try:
                visualization.draw_macd_line(data=data0,
                                             profits=profit,
                                             date=date,
                                             code=sc,
                                             table_name=table_name,
                                             pixel=pixel)
                # pass
            except Exception as e:
                print(e)
                pass
            # data = data[0:len(data) - detal]
            data = data[
                data.date < dt.datetime(date.year, date.month, date.day)]
            end_time = date
    return 1
예제 #10
0
 def is_trade_day(cls, date):
     curror = BaseModel('calendar').query(dict(date=Calendar.today()))
     return True if curror.count() else False
예제 #11
0
def fun(stocks):
    # print(os.getpid(), stocks)
    kline = 'index_min5'
    pixel = 64
    length = 12
    count = 5
    interval = 48
    hour = 9
    minute = 55
    detal = KlineInfo.get_detal(kline=kline)

    # wave=0.02
    # amount_data=50000000
    table_name = 'A_MA_Stub_' + kline + '_version5'

    print(table_name)
    for sc in stocks:
        print(sc)
        end_time = dt.datetime(2018, 8, 15)
        start_time = dt.datetime(2016, 1, 1)
        data = KlineData.read_data(code=sc,
                                   start_date=Calendar.calc(start_time,
                                                            -8)['date'],
                                   end_date=end_time,
                                   kline=kline,
                                   timemerge=True)

        if len(data) <= 200:
            continue
        # data = CalMacd.cal_macd(data=data, interval=interval, detal=detal)

        # data=CalMa.cal_ma_stub(data=data,interval=interval,detal=detal)
        data = CalMa.cal_profit(data=data, interval=interval, detal=detal)

        data = data.dropna()
        d = data.date.iloc[-1]

        data = data[
            data.date <= dt.datetime(d.year, d.month, d.day, hour, minute)]

        while end_time > start_time:
            # print(sc,dt.datetime.now())
            data0 = data.tail(length)
            data0 = data0.reset_index(drop=True)
            profit = data0['profit']
            profit_self = data0['profit_self']
            date = data0['date']
            # amin, amax = data0.low.min(), data0.high.max()

            if len(data0) < length:
                break

            date1 = date.iloc[length - 1]
            date2 = date.iloc[length - 10]

            # data0 = CalMacd.data_normalization(data0,pixel=pixel)
            data0 = CalMa.data_stub_normalization(data0, pixel=pixel)
            profit = profit.iloc[length - 1]
            profitself = profit_self.iloc[length - 1]

            profit_relative = 0
            if 'min' in kline:
                if 'A' in table_name:
                    if date1.hour != hour and date1.minute != minute:
                        # data = data[data.date < dt.datetime(date2.year, date2.month, date2.day)]
                        break
                if abs(profit) > 0.11 or abs(profitself) > 0.097:
                    data = data[data.date <= dt.datetime(
                        date2.year, date2.month, date2.day, hour, minute)]
                    continue
            else:
                if abs(profit) > 0.1 * interval:
                    data = data[data.date <= dt.datetime(
                        date2.year, date2.month, date2.day, hour, minute)]
                    continue
                if 'A' in table_name:
                    if abs(profitself) > 0.097:
                        data = data[data.date <= dt.datetime(
                            date2.year, date2.month, date2.day, hour, minute)]
                        print(sc, str(profitself) + '_' + str(date1))
                        continue

            try:
                visualization.draw_ma_stub_line2(
                    data=data0,
                    profits=profit,
                    date=date1,
                    code=sc,
                    table_name=table_name,
                    pixel=pixel,
                    length=length,
                    profit_relative=profit_relative,
                    count=count)

                pass
            except Exception as e:
                print(e)
                pass
            data = data[data.date <= dt.datetime(date2.year, date2.month,
                                                 date2.day, hour, minute)]
            end_time = date2

    return 1
def fun(stocks):
    # print(os.getpid(), stocks)
    kline = 'index_min5'
    pixel=56
    n=4
    count=2
    interval = KlineInfo.get_interval(kline=kline)
    detal=KlineInfo.get_detal(kline=kline)
    table_name='A_MACD_left_right_'+kline+'_version6'


    print(table_name)
    for sc in stocks:
        end_time = dt.datetime(2018, 8, 10)
        start_time = dt.datetime(2016, 1, 1)
        data = KlineData.read_data(code=sc, start_date=Calendar.calc(start_time, -203)['date'], end_date=end_time,
                                   kline=kline, timemerge=True)

        if len(data) <= 200 :
            continue


        data = CalMacd.cal_macd(data=data, interval=interval, detal=detal)
        data = data.dropna()

        d = data.date.iloc[-1]
        data = data[data.date <= dt.datetime(d.year, d.month, d.day, 9, 35)]
        print(sc)
        while end_time > start_time:
            # print(sc,dt.datetime.now())
            data0 = data.tail(pixel)
            data0 = data0.reset_index(drop=True)
            profit = data0['profit']
            profit_self = data0['profit_self']
            date = data0['date']
            if len(data0) < pixel:
                break
            date2 = date.iloc[pixel - 6]
            date1 = date.iloc[pixel - 1]
            data0 = CalMacd.data_normalization(data0,pixel=pixel+n*count)
            profit = profit.iloc[pixel-1]
            profitself = profit_self.iloc[pixel-1]
            profit_relative = 0
            if 'min' in kline:
                if 'A' in table_name:
                    if date1.hour != 9 and date1.minute!=35:
                        data = data[data.date <= dt.datetime(date2.year, date2.month, date2.day, 9, 35)]
                        break
                if abs(profit) > 0.11 or abs(profitself)>0.097:
                    data = data[data.date <= dt.datetime(date2.year, date2.month, date2.day, 9, 35)]
                    continue
            else:
                if abs(profit) > 0.1 * interval:
                    data = data[data.date <= dt.datetime(date2.year, date2.month, date2.day, 9, 35)]
                    continue
                if 'A' in table_name:
                    if abs(profitself) > 0.097:
                        data = data[data.date <= dt.datetime(date2.year, date2.month, date2.day, 9, 35)]
                        print(sc, str(profitself) + '_' + str(date))
                        continue


            try:
                visualization.draw_macd_line4(data=data0, profits=profit,
                                              date=date1, code=sc,
                                              table_name=table_name, pixel=pixel, n=n, profit_relative=profit_relative,
                                              count=count)
                pass
            except Exception as e:
                print(e)
                pass
            data = data[data.date <= dt.datetime(date2.year, date2.month, date2.day, 9, 35)]
            end_time = date2

    return 1
예제 #13
0
def fun(stocks):
    # print(os.getpid(), stocks)
    kline = 'kline_day'
    table_name = 'A_new_plus_last8_MA_' + kline
    print(table_name)
    interval = KlineInfo.get_interval(kline)
    detal = KlineInfo.get_detal(kline)
    pixel = 64
    n = 8
    for sc in stocks:
        end_time = dt.datetime(2018, 6, 25)
        start_time = dt.datetime(2016, 1, 1)
        data = KlineData.read_data(code=sc,
                                   start_date=Calendar.calc(start_time,
                                                            -203)['date'],
                                   end_date=end_time,
                                   kline=kline,
                                   timemerge=True)
        if len(data) <= 200:
            continue
        data = CalMa.cal_ma(data, interval, detal)
        data = data.dropna()
        print(sc)

        while end_time > dt.datetime(2016, 1, 1):
            data0 = data.tail(pixel)
            data0 = data0.reset_index(drop=True)
            profit = data0['profit']
            profitself = data0['profit_self']
            date = data0['date']
            data0 = CalMa.data_normalization2(data0, pixel)
            data0['date'] = date
            data0['profit'] = profit
            data0['profitself'] = profitself
            if len(data0) < pixel:
                break
            data0 = data0.reset_index(drop=True)
            profit = data0.profit.iloc[len(data0) - 1]
            profitself = data0.profitself.iloc[len(data0) - 1]
            date = data0.date.iloc[len(data0) - 1]

            if 'min' in kline:
                if 'A' in table_name:
                    if date.hour != 15:
                        data = data[data.date < dt.datetime(
                            date.year, date.month, date.day)]
                        break
                if abs(profit) > 0.11 or abs(profitself) > 0.097:
                    data = data[data.date < dt.datetime(
                        date.year, date.month, date.day)]
                    continue
            else:
                if abs(profit) > 0.1 * interval:
                    data = data[data.date < dt.datetime(
                        date.year, date.month, date.day)]
                    continue
                if 'A' in table_name:
                    if abs(profitself) > 0.097:
                        data = data[data.date < dt.datetime(
                            date.year, date.month, date.day)]
                        print(sc, str(profitself) + '_' + str(date))
                        continue
            try:
                visualization.draw_ma_line2(data=data0,
                                            profits=profit,
                                            date=date,
                                            code=sc,
                                            table_name=table_name,
                                            pixel=pixel,
                                            n=n)
            except Exception as e:
                print(e)
                pass
            data = data[
                data.date < dt.datetime(date.year, date.month, date.day)]
            end_time = date
    return 1
예제 #14
0
def fun(data):
    stocks = data['stocks']
    kline = data['kline']
    pixel = 64
    interval = KlineInfo.get_interval(kline=kline)
    detal = KlineInfo.get_detal(kline=kline)
    table_name = 'MACD_A_' + kline
    day_interval = KlineInfo.get_day_interval(kline)
    print(table_name)
    for sc in stocks:
        # end_time = dt.datetime(2018, 8, 1)
        # start_time = dt.datetime(2018, 7, 16)
        end_time = Calendar.today()
        start_time = Calendar.calc(end_time, -day_interval)['date']
        data = KlineData.read_data(code=sc,
                                   start_date=Calendar.calc(start_time,
                                                            -203)['date'],
                                   end_date=end_time,
                                   kline=kline,
                                   timemerge=True)
        if len(data) <= 200:
            continue
        data = CalMacd.cal_macd(data=data, interval=interval, detal=detal)
        data = data.dropna()
        # data = data[0:len(data) - interval]
        print(sc)
        while end_time > start_time:
            # print(sc,dt.datetime.now())
            data0 = data.tail(pixel)
            data0 = data0.reset_index(drop=True)
            profit = data0['profit']
            profit_self = data0['profit_self']

            date = data0['date']
            data0 = CalMacd.data_normalization(data0, pixel=pixel)
            # print(sc, dt.datetime.now())
            data0['date'] = date
            data0['profit'] = profit
            data0['profit_self'] = profit_self
            # print(len(data0))
            if len(data0) < pixel:
                break
            data0 = data0.reset_index(drop=True)
            profit = data0.profit.iloc[pixel - 1]
            profitself = data0.profit_self.iloc[pixel - 1]
            date = data0.date.iloc[pixel - 1]
            if 'min' in kline:
                if 'A' in table_name:
                    if date.hour != 15:
                        data = data[data.date < dt.datetime(
                            date.year, date.month, date.day)]
                        break
                if abs(profit) > 0.11 or abs(profitself) > 0.097:
                    data = data[data.date < dt.datetime(
                        date.year, date.month, date.day)]

                    continue
            else:
                if abs(profit) > 0.1 * interval:
                    data = data[data.date < dt.datetime(
                        date.year, date.month, date.day)]
                    continue
                if 'A' in table_name:
                    if abs(profitself) > 0.097:
                        data = data[data.date < dt.datetime(
                            date.year, date.month, date.day)]
                        print(sc, str(profitself) + '_' + str(date))
                        continue

            try:
                visualization.draw_macd_line(data=data0,
                                             profits=profit,
                                             date=date,
                                             code=sc,
                                             table_name=table_name,
                                             pixel=pixel)
                pass
            except Exception as e:
                print(e)
                pass
            data = data[
                data.date < dt.datetime(date.year, date.month, date.day)]
            end_time = date

    return 1