def pollack_boxcox_uncertainty(d, perc): mean = get_pollack(d) std = mean * perc gt_perf = pollack_uncertainty(d, perc) if std: return Distribution.DistributionFromBoxCoxGaussian(mean, std, gt_perf._mcpts, lower=0) else: return gt_perf
def fabrication_boxcox_uncertainty(d, n): if n > 0: func = UncertaintyModel.fabrication() gt = func(d, n) tgt_mean = gt.mean tgt_std = gt.var ** .5 return Distribution.DistributionFromBoxCoxGaussian(tgt_mean, tgt_std, gt._mcpts, lower=0) else: return 0
def design_pollack_boxcox_uncertainty(d, p0, perc): mean = get_pollack(d) std = mean * perc gt_perf = design_pollack_uncertainty(d, p0, perc) if std: tgt_mean = gt_perf.mean tgt_std = gt_perf.var ** .5 return Distribution.DistributionFromBoxCoxGaussian(tgt_mean, tgt_std, gt_perf._mcpts, lower=0) else: return gt_perf