def __init__(self, map): self.mapAdaptator = MapAdaptator(map) obstaclesList, mapSizeX, mapSizeY, minCorner = self.mapAdaptator.getMapInfo( ) self.minCorner = minCorner self.graphGenerator = GraphGenerator(obstaclesList, mapSizeX, mapSizeY) self.graph = self.graphGenerator.generateGraph() self.lineOfSightCalculator = LineOfSightCalculator(self.graph) self.pathsList = [] self.goodPaths = [] self.indice = 0 self.theGoodPath = Path()
def setUp(self): self.map = MagicMock() self.limit = MagicMock() self.limit.getMinCorner.return_value = (100, 100) self.limit.getMaxCorner.return_value = (1000, 900) self.map.getMapLimit.return_value = self.limit blueSquare = MagicMock() blueSquare.findCenterOfMass.return_value = 200, 200 obstacleList = [blueSquare] self.map.getShapesList.return_value = obstacleList self.mapAdaptator = MapAdaptator(self.map)
class MapAdaptatorTest(TestCase): def setUp(self): self.map = MagicMock() self.limit = MagicMock() self.limit.getMinCorner.return_value = (100,100) self.limit.getMaxCorner.return_value = (1000,900) self.map.getMapLimit.return_value = self.limit blueSquare = MagicMock() blueSquare.findCenterOfMass.return_value = 200,200 obstacleList = [blueSquare] self.map.getShapesList.return_value = obstacleList self.mapAdaptator = MapAdaptator(self.map) def test_whenGetMapInfoIsCalledThenReturnGoodValues(self): goodmapSizeX, goodmapSizeY = 900, 800 goodMinCorner = (100,100) goodObstacle = Obstacle((100,100)) obstaclesList, mapSizeX, mapSizeY, minCorner = self.mapAdaptator.getMapInfo() self.assertEqual(goodmapSizeX, mapSizeX) self.assertEqual(goodmapSizeY, mapSizeY) self.assertEqual(goodMinCorner, minCorner) self.assertEqual(goodObstacle.positionX, obstaclesList[0].positionX) self.assertEqual(goodObstacle.positionY, obstaclesList[0].positionY)
class MapAdaptatorTest(TestCase): def setUp(self): self.map = MagicMock() self.limit = MagicMock() self.limit.getMinCorner.return_value = (100, 100) self.limit.getMaxCorner.return_value = (1000, 900) self.map.getMapLimit.return_value = self.limit blueSquare = MagicMock() blueSquare.findCenterOfMass.return_value = 200, 200 obstacleList = [blueSquare] self.map.getShapesList.return_value = obstacleList self.mapAdaptator = MapAdaptator(self.map) def test_whenGetMapInfoIsCalledThenReturnGoodValues(self): goodmapSizeX, goodmapSizeY = 900, 800 goodMinCorner = (100, 100) goodObstacle = Obstacle((100, 100)) obstaclesList, mapSizeX, mapSizeY, minCorner = self.mapAdaptator.getMapInfo( ) self.assertEqual(goodmapSizeX, mapSizeX) self.assertEqual(goodmapSizeY, mapSizeY) self.assertEqual(goodMinCorner, minCorner) self.assertEqual(goodObstacle.positionX, obstaclesList[0].positionX) self.assertEqual(goodObstacle.positionY, obstaclesList[0].positionY)
def __init__(self, map): self.mapAdaptator = MapAdaptator(map) obstaclesList, mapSizeX, mapSizeY, minCorner = self.mapAdaptator.getMapInfo() self.minCorner = minCorner self.graphGenerator = GraphGenerator(obstaclesList, mapSizeX, mapSizeY) self.graph = self.graphGenerator.generateGraph() self.lineOfSightCalculator = LineOfSightCalculator(self.graph) self.pathsList = [] self.goodPaths = [] self.indice = 0 self.theGoodPath = Path()
def setUp(self): self.map = MagicMock() self.limit = MagicMock() self.limit.getMinCorner.return_value = (100,100) self.limit.getMaxCorner.return_value = (1000,900) self.map.getMapLimit.return_value = self.limit blueSquare = MagicMock() blueSquare.findCenterOfMass.return_value = 200,200 obstacleList = [blueSquare] self.map.getShapesList.return_value = obstacleList self.mapAdaptator = MapAdaptator(self.map)
class Pathfinder: def __init__(self, map): self.mapAdaptator = MapAdaptator(map) obstaclesList, mapSizeX, mapSizeY, minCorner = self.mapAdaptator.getMapInfo() self.minCorner = minCorner self.graphGenerator = GraphGenerator(obstaclesList, mapSizeX, mapSizeY) self.graph = self.graphGenerator.generateGraph() self.lineOfSightCalculator = LineOfSightCalculator(self.graph) self.pathsList = [] self.goodPaths = [] self.indice = 0 self.theGoodPath = Path() def findGoodPoint(self, point): return self.graph.needAGoodPointToGo(point) def findClosePoint(self, point): return self.graph.needAClosePoint(point) def findPath(self, positionRobot, pointToMoveTo): print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@") goodPositionRobot = self.findGoodPoint(positionRobot) startingPathNode = self.graph.findGoodSafeNodeToGo(goodPositionRobot) endingPathNode = self.graph.findGoodSafeNodeToGo(pointToMoveTo) print pointToMoveTo, endingPathNode.positionX, endingPathNode.positionY self.theGoodPath = Path() self.pathsList = [] self.goodPaths = [] path = Path() path.append(Node(positionRobot)) path.append(startingPathNode) self.pathsList.append(path) self.__findAllPaths(path, endingPathNode) goodPath = Path() goodPath.append(Node((0,0))) goodPath.totalDistance = 99999 for compteur in range(0, self.goodPaths.__len__()): currentPath = self.goodPaths[compteur] currentPath.append(Node(pointToMoveTo)) self.__polishGoodPaths() self.lineOfSightCalculator.tryStraightLine(self.goodPaths) for compteur in range(0, self.goodPaths.__len__()): currentPath= self.goodPaths[compteur] currentPath.ajustDistance() if currentPath.totalDistance < goodPath.totalDistance: goodPath = currentPath self.printPath(goodPath) if goodPath.totalDistance == 99999: self.__displayPathfinder(goodPath, positionRobot) return False self.theGoodPath = goodPath self.__displayPathfinder(goodPath, positionRobot) return goodPath def __polishGoodPaths(self): for compteur in range(0,self.goodPaths.__len__()): path = self.goodPaths[compteur] nodesToBeRemoved = [] for compteur in range(1, path.__len__()): if path[compteur].isASafeNode == True: previousNode = path[compteur-1] nextNode = path[compteur+1] if previousNode.positionX != nextNode.positionX: nodesToBeRemoved.append(path[compteur]) for compteur in range(0, nodesToBeRemoved.__len__()): path.remove(nodesToBeRemoved[compteur]) def __findAllPaths(self, path, endingPathNode): lastNode = path[-1] if lastNode != endingPathNode and path.isOpen() == True: for compteur in range(0, lastNode.connectedNodes.__len__()): if (path.contains(lastNode.connectedNodes[compteur]) == False): newPath = path.clone() newPath.append(lastNode.connectedNodes[compteur]) self.pathsList.append(newPath) self.__findAllPaths(newPath, endingPathNode) self.pathsList.remove(path) elif lastNode == endingPathNode: self.goodPaths.append(path) def drawPath(self, img): for compteur in range (1, self.theGoodPath.__len__()): startLine = (self.theGoodPath[compteur-1].positionX + self.minCorner[0], self.theGoodPath[compteur-1].positionY + self.minCorner[1]) endLine = (self.theGoodPath[compteur].positionX + self.minCorner[0], self.theGoodPath[compteur].positionY + self.minCorner[1]) cv2.line(img, (int(startLine[0]), int(startLine[1])), (int(endLine[0]), int(endLine[1])), (0, 0, 255), 2, 1) #methode pour afficher le path dans console, pas importante def printPath(self, goodPath): for compteur in range(0, goodPath.__len__()): print "path:", goodPath[compteur].positionX, goodPath[compteur].positionY print goodPath.totalDistance #methode pour display les shits du pathfinding, pas importante non plus def __displayPathfinder(self, goodPath, positionRobot): img = np.zeros((600, 1000, 3), np.uint8) for compteur in range (0, self.graphGenerator.obstaclesList.__len__()): currentObstacle = self.graphGenerator.obstaclesList[(compteur)] cv2.rectangle(img, (currentObstacle.positionX - self.graphGenerator.SAFE_MARGIN, currentObstacle.positionY - self.graphGenerator.SAFE_MARGIN), (currentObstacle.positionX + self.graphGenerator.SAFE_MARGIN, currentObstacle.positionY + self.graphGenerator.SAFE_MARGIN), (0, 255, 0), -1, 1) self.graph.nodesList.sort(key=lambda node: node.positionX) for compteur in range (0, self.graph.nodesList.__len__()): currentNode = self.graph.nodesList[(compteur)] departPoint = (currentNode.positionX, currentNode.positionY) connectedNode = currentNode.getConnectedNodesList() #print "GRAPh", currentNode.positionX, currentNode.positionY for compteurConnected in range(0, connectedNode.__len__()): finalNode = connectedNode[(compteurConnected)] finalPoint = (finalNode.positionX, finalNode.positionY) #print " Connected", finalNode.positionX, finalNode.positionY cv2.line(img, departPoint, finalPoint, (255, 0, 0), 2, 1) for compteur in range (0, goodPath.__len__()): if compteur == 0: startLine = positionRobot else: startLine = (goodPath[compteur-1].positionX,goodPath[compteur-1].positionY) endLine = (goodPath[compteur].positionX,goodPath[compteur].positionY) cv2.line(img, (int(startLine[0]), int(startLine[1])), (int(endLine[0]), int(endLine[1])), (0, 0, 255), 2, 1) for compteur in range (0, self.graph.safeZonesList.__len__()): currentZone = self.graph.safeZonesList[compteur] cv2.rectangle(img, currentZone.cornerTopLeft, currentZone.cornerBottomRight, (0, 150, 150), 2, 1) cv2.imwrite('image' + str(self.indice) + '.jpg', img) self.indice = self.indice + 1
class Pathfinder: def __init__(self, map): self.mapAdaptator = MapAdaptator(map) obstaclesList, mapSizeX, mapSizeY, minCorner = self.mapAdaptator.getMapInfo( ) self.minCorner = minCorner self.graphGenerator = GraphGenerator(obstaclesList, mapSizeX, mapSizeY) self.graph = self.graphGenerator.generateGraph() self.lineOfSightCalculator = LineOfSightCalculator(self.graph) self.pathsList = [] self.goodPaths = [] self.indice = 0 self.theGoodPath = Path() def findGoodPoint(self, point): return self.graph.needAGoodPointToGo(point) def findClosePoint(self, point): return self.graph.needAClosePoint(point) def findPath(self, positionRobot, pointToMoveTo): print( "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@" ) goodPositionRobot = self.findGoodPoint(positionRobot) startingPathNode = self.graph.findGoodSafeNodeToGo(goodPositionRobot) endingPathNode = self.graph.findGoodSafeNodeToGo(pointToMoveTo) print pointToMoveTo, endingPathNode.positionX, endingPathNode.positionY self.theGoodPath = Path() self.pathsList = [] self.goodPaths = [] path = Path() path.append(Node(positionRobot)) path.append(startingPathNode) self.pathsList.append(path) self.__findAllPaths(path, endingPathNode) goodPath = Path() goodPath.append(Node((0, 0))) goodPath.totalDistance = 99999 for compteur in range(0, self.goodPaths.__len__()): currentPath = self.goodPaths[compteur] currentPath.append(Node(pointToMoveTo)) self.__polishGoodPaths() self.lineOfSightCalculator.tryStraightLine(self.goodPaths) for compteur in range(0, self.goodPaths.__len__()): currentPath = self.goodPaths[compteur] currentPath.ajustDistance() if currentPath.totalDistance < goodPath.totalDistance: goodPath = currentPath self.printPath(goodPath) if goodPath.totalDistance == 99999: self.__displayPathfinder(goodPath, positionRobot) return False self.theGoodPath = goodPath self.__displayPathfinder(goodPath, positionRobot) return goodPath def __polishGoodPaths(self): for compteur in range(0, self.goodPaths.__len__()): path = self.goodPaths[compteur] nodesToBeRemoved = [] for compteur in range(1, path.__len__()): if path[compteur].isASafeNode == True: previousNode = path[compteur - 1] nextNode = path[compteur + 1] if previousNode.positionX != nextNode.positionX: nodesToBeRemoved.append(path[compteur]) for compteur in range(0, nodesToBeRemoved.__len__()): path.remove(nodesToBeRemoved[compteur]) def __findAllPaths(self, path, endingPathNode): lastNode = path[-1] if lastNode != endingPathNode and path.isOpen() == True: for compteur in range(0, lastNode.connectedNodes.__len__()): if (path.contains(lastNode.connectedNodes[compteur]) == False): newPath = path.clone() newPath.append(lastNode.connectedNodes[compteur]) self.pathsList.append(newPath) self.__findAllPaths(newPath, endingPathNode) self.pathsList.remove(path) elif lastNode == endingPathNode: self.goodPaths.append(path) def drawPath(self, img): for compteur in range(1, self.theGoodPath.__len__()): startLine = (self.theGoodPath[compteur - 1].positionX + self.minCorner[0], self.theGoodPath[compteur - 1].positionY + self.minCorner[1]) endLine = (self.theGoodPath[compteur].positionX + self.minCorner[0], self.theGoodPath[compteur].positionY + self.minCorner[1]) cv2.line(img, (int(startLine[0]), int(startLine[1])), (int(endLine[0]), int(endLine[1])), (0, 0, 255), 2, 1) #methode pour afficher le path dans console, pas importante def printPath(self, goodPath): for compteur in range(0, goodPath.__len__()): print "path:", goodPath[compteur].positionX, goodPath[ compteur].positionY print goodPath.totalDistance #methode pour display les shits du pathfinding, pas importante non plus def __displayPathfinder(self, goodPath, positionRobot): img = np.zeros((600, 1000, 3), np.uint8) for compteur in range(0, self.graphGenerator.obstaclesList.__len__()): currentObstacle = self.graphGenerator.obstaclesList[(compteur)] cv2.rectangle( img, (currentObstacle.positionX - self.graphGenerator.SAFE_MARGIN, currentObstacle.positionY - self.graphGenerator.SAFE_MARGIN), (currentObstacle.positionX + self.graphGenerator.SAFE_MARGIN, currentObstacle.positionY + self.graphGenerator.SAFE_MARGIN), (0, 255, 0), -1, 1) self.graph.nodesList.sort(key=lambda node: node.positionX) for compteur in range(0, self.graph.nodesList.__len__()): currentNode = self.graph.nodesList[(compteur)] departPoint = (currentNode.positionX, currentNode.positionY) connectedNode = currentNode.getConnectedNodesList() #print "GRAPh", currentNode.positionX, currentNode.positionY for compteurConnected in range(0, connectedNode.__len__()): finalNode = connectedNode[(compteurConnected)] finalPoint = (finalNode.positionX, finalNode.positionY) #print " Connected", finalNode.positionX, finalNode.positionY cv2.line(img, departPoint, finalPoint, (255, 0, 0), 2, 1) for compteur in range(0, goodPath.__len__()): if compteur == 0: startLine = positionRobot else: startLine = (goodPath[compteur - 1].positionX, goodPath[compteur - 1].positionY) endLine = (goodPath[compteur].positionX, goodPath[compteur].positionY) cv2.line(img, (int(startLine[0]), int(startLine[1])), (int(endLine[0]), int(endLine[1])), (0, 0, 255), 2, 1) for compteur in range(0, self.graph.safeZonesList.__len__()): currentZone = self.graph.safeZonesList[compteur] cv2.rectangle(img, currentZone.cornerTopLeft, currentZone.cornerBottomRight, (0, 150, 150), 2, 1) cv2.imwrite('image' + str(self.indice) + '.jpg', img) self.indice = self.indice + 1