input_files, tree, 'mvis', toString(cuts_est), 'weight', global_weights, fakefactor=fakefactor, ffInputs=['l2_pt', 'l2_decayMode', 'mvis']) closure.computeCDF('True') closure.computeCDF('Est') for name, bins in var_bins.items(): plotClosure(fakeType + '_' + name, closure, bins, doErrors=False, yRange=[0.5, 2.], plotDir=plotDir) #for nbins in [100,50,25]: #cdf = closure.data['True']['CDFInvert'] #bins = [cdf.Eval(i/float(nbins)) for i in xrange(nbins+1)] #plotClosure(fakeType+'_NBins'+str(nbins), closure, bins) plotSummary(fakeType, closure, 0, 600) # writeNonClosure(closure, output_file, '{FAKETYPE}_Histo_Smooth_Ratio'.format(FAKETYPE=fakeType)) #canvas.Write()
global_weights = inputs['Weights'] tree = inputs['Tree'] fakefactor = inputs['FakeFactor'] cuts_true = inputs['CutsIso'] cuts_est = inputs['CutsAntiIso'] closure = Closure() closure.fillData('True', input_files, tree, 'mvis', toString(cuts_true), 'weight', global_weights) #closure.fillData('Est', input_files, tree, 'mvis', toString(cuts_est), 'weight', global_weights, fakefactor=fakefactor, ffInputs=['l2_pt', 'l2_decayMode', 'mvis']) closure.fillData('Est', input_files, tree, 'mvis', toString(cuts_est), 'weight', global_weights, fakefactor=fakefactor, ffInputs=['l2_pt', 'l2_decayMode']) closure.computeCDF('True') closure.computeCDF('Est') for name,bins in var_bins.items(): plotClosure(fakeType+'_'+name, closure, bins, doErrors=False, yRange=[0.5,2.], plotDir=plotDir) #for nbins in [100,50,25]: #cdf = closure.data['True']['CDFInvert'] #bins = [cdf.Eval(i/float(nbins)) for i in xrange(nbins+1)] #plotClosure(fakeType+'_NBins'+str(nbins), closure, bins) plotSummary(fakeType, closure, 0, 600) # writeNonClosure(closure, output_file, '{FAKETYPE}_Histo_Smooth_Ratio'.format(FAKETYPE=fakeType)) #canvas.Write() ##cdfTrue.SetName('{FAKETYPE}_CDF_True'.format(FAKETYPE=fakeType)) ##cdfEst.SetName('{FAKETYPE}_CDF_Est'.format(FAKETYPE=fakeType)) #histoTrue.SetName('{FAKETYPE}_Histo_True_{H}'.format(FAKETYPE=fakeType,H=binid))
global_weights = inputs['Weights'] tree = inputs['Tree'] fakefactor = inputs['FakeFactor'] cuts_true = inputs['CutsIso'] cuts_est = inputs['CutsAntiIso'] closure = Closure() closure.fillData('True', input_files, tree, 'l1_reliso05', toString(cuts_true), 'weight', global_weights) closure.fillData('Est', input_files, tree, 'l1_reliso05', toString(cuts_est), 'weight', global_weights, fakefactor=fakefactor, ffInputs=['l2_pt', 'l2_decayMode', 'mvis']) closure.computeCDF('True') closure.computeCDF('Est') for name,bins in var_bins.items(): plotClosure(fakeType+'_'+name, closure, bins, doErrors=False, yRange=[0.5,2.], plotDir=plotDir, xTitle='iso(#mu)') #for nbins in [100,50,25]: #cdf = closure.data['True']['CDFInvert'] #bins = [cdf.Eval(i/float(nbins)) for i in xrange(nbins+1)] #plotClosure(fakeType+'_NBins'+str(nbins), closure, bins) plotSummary(fakeType, closure, 0, 600) # writeNonClosure(closure, output_file, '{FAKETYPE}_Histo_Smooth_Ratio'.format(FAKETYPE=fakeType)) #canvas.Write() ##cdfTrue.SetName('{FAKETYPE}_CDF_True'.format(FAKETYPE=fakeType)) ##cdfEst.SetName('{FAKETYPE}_CDF_Est'.format(FAKETYPE=fakeType)) #histoTrue.SetName('{FAKETYPE}_Histo_True_{H}'.format(FAKETYPE=fakeType,H=binid))