input_dict = {} # initialize input_dict = { 'f1': { 'fname': 'OBV', 'params': [9], 'transform': ['Scaler', 'Robust'] }, 'f2': { 'fname': 'OBV', 'params': [], 'transform': ['Normalized', 10] } } dataSet = featureGen.generate_features(df, input_dict) #dataSet = transf.normalizer(dataSet, 'Volume', 50) # Plot price and indicators startDate = "2019-01-20" endDate = "2019-02-12" plotDataSet = dataSet[startDate:endDate] plot_dict = {} plot_dict['Issue'] = issue plot_dict['Plot_Vars'] = list(feature_dict.keys()) plot_dict['Volume'] = 'Yes' plotIt.price_Ind_Vol_Plot(plot_dict, plotDataSet)
dataLoadStartDate = df.Date[lastRow - 3000] pprint(dataLoadStartDate) dataSet = dSet.set_date_range(df, dataLoadStartDate, dataLoadEndDate) pprint(dataSet.tail(10)) # Resolve any NA's for now dataSet.fillna(method='ffill', inplace=True) dataSet = taLibMomSt.RSI(dataSet, 10) #dataSet = taLibMomSt.RSI2(dataSet, 2) pprint(dataSet.head(5)) pprint(dataSet.tail(5)) dataSet = taLibMomSt.PPO(dataSet, 12, 26) # dataSet = taLibMomSt.CMO(dataSet, 20) # dataSet = taLibMomSt.CCI(dataSet, 20) # dataSet = taLibMomSt.UltOsc(dataSet, 7, 24, 28) # dataSet = taLibMomSt.rate_OfChg(dataSet, 10) startDate = dataLoadStartDate endDate = dataLoadEndDate plotDF = dataSet[startDate:endDate] # Set up dictionary and plot HigherClose plot_dict = {} plot_dict['Issue'] = issue plot_dict['Plot_Vars'] = list(feature_dict.keys()) plot_dict['Volume'] = 'Yes' plotIt.price_Ind_Vol_Plot(plot_dict, plotDF)
y_label="Frequency", title="beLong distribution for " + issue) plt.show(block=False) # Stationarity tests # stationarity_tests(mmData, 'Close', issue) # cols = [k for k,v in feature_dict.items() if v == 'Keep'] # for x in cols: # stationarity_tests(mmData, x, issue) plot_dict = {} plot_dict['Issue'] = issue plot_vars = [k for k, v in feature_dict.items() if v == 'Keep'] plot_dict['Plot_Vars'] = plot_vars plot_dict['Volume'] = 'Yes' plotIt.price_Ind_Vol_Plot(plot_dict, mmData) # EV related evData = dataSet.loc[modelStartDate:modelEndDate].copy() col_vals = [k for k, v in feature_dict.items() if v == 'Drop'] to_drop = ['Open', 'High', 'Low', 'gainAhead', 'Close', 'Volume'] for x in to_drop: col_vals.append(x) mmData = dSet.drop_columns(mmData, col_vals) names = mmData.columns.values.tolist() # with open('columns_to_keep.json', 'w') as outfile: # json.dump(names, outfile)