def main(args): # ---------- SETTINGS ---------- nameInputImagesRelPath = 'RawReferResults' nameInputReferImagesRelPath = 'Images_Full' nameOutputImagesRelPath = 'RawReferResults_Orig_Full' nameInputImagesFiles = '*.nii.gz' nameInputReferImagesFiles = '*.nii.gz' # prefixPatternInputFiles = 'vol[0-9][0-9]_*' nameBoundingBoxes = 'found_boundingBoxes_original.npy' nameOutputImagesFiles = lambda in_name: filenamenoextension(in_name) + '.nii.gz' # ---------- SETTINGS ---------- workDirsManager = WorkDirsManager(args.basedir) BaseDataPath = workDirsManager.getNameBaseDataPath() InputImagesPath = workDirsManager.getNameExistPath(BaseDataPath, nameInputImagesRelPath) InputReferImagesPath = workDirsManager.getNameExistPath(BaseDataPath, nameInputReferImagesRelPath) OutputImagesPath = workDirsManager.getNameNewPath(BaseDataPath, nameOutputImagesRelPath) listInputImagesFiles = findFilesDirAndCheck(InputImagesPath, nameInputImagesFiles) listInputReferImagesFiles = findFilesDirAndCheck(InputReferImagesPath, nameInputReferImagesFiles) dict_bounding_boxes = readDictionary(joinpathnames(BaseDataPath, nameBoundingBoxes)) for i, in_image_file in enumerate(listInputImagesFiles): print("\nInput: \'%s\'..." % (basename(in_image_file))) in_referimage_file = findFileWithSamePrefix(basename(in_image_file), listInputReferImagesFiles, prefix_pattern='vol[0-9][0-9]_') print("Refer image file: \'%s\'..." % (basename(in_referimage_file))) bounding_box = dict_bounding_boxes[filenamenoextension(in_referimage_file)] cropped_image_array = FileReader.getImageArray(in_image_file) print("Input cropped image size: \'%s\'..." %(str(cropped_image_array.shape))) # 1 step: invert image cropped_image_array = FlippingImages.compute(cropped_image_array, axis=0) # 2 step: extend image full_image_shape = FileReader.getImageSize(in_referimage_file) full_image_array = ExtendImages.compute3D(cropped_image_array, bounding_box, full_image_shape) print("Output full image size: \'%s\'..." % (str(full_image_array.shape))) out_image_file = joinpathnames(OutputImagesPath, nameOutputImagesFiles(in_image_file)) print("Output: \'%s\', of dims \'%s\'..." %(basename(out_image_file), str(full_image_array.shape))) FileReader.writeImageArray(out_image_file, full_image_array)
def main(args): # ---------- SETTINGS ---------- nameInputRelPath = 'LumenMasks_WorkData' nameInputFiles = 'grndtru*.npz' # ---------- SETTINGS ---------- workDirsManager = WorkDirsManager(args.basedir) BaseDataPath = workDirsManager.getNameBaseDataPath() InputMasksPath = workDirsManager.getNameExistPath(BaseDataPath, nameInputRelPath) listInputMasksFiles = findFilesDirAndCheck(InputMasksPath, nameInputFiles) list_ratio_back_foregrnd_class = [] for i, in_mask_file in enumerate(listInputMasksFiles): print("\nInput: \'%s\'..." % (basename(in_mask_file))) mask_array = FileReader.getImageArray(in_mask_file) if (args.masksToRegionInterest): (num_foregrnd_class, num_backgrnd_class) = compute_balance_classes_with_exclusion(mask_array) else: (num_foregrnd_class, num_backgrnd_class) = compute_balance_classes(mask_array) ratio_back_foregrnd_class = num_backgrnd_class / num_foregrnd_class list_ratio_back_foregrnd_class.append(ratio_back_foregrnd_class) print("Number of voxels of foreground masks: \'%s\', and background masks: \'%s\'..." %(num_foregrnd_class, num_backgrnd_class)) print("Balance classes background / foreground masks: \'%s\'..." %(ratio_back_foregrnd_class)) # endfor average_ratio_back_foregrnd_class = sum(list_ratio_back_foregrnd_class) / len(list_ratio_back_foregrnd_class) print("Average balance classes negative / positive: \'%s\'..." % (average_ratio_back_foregrnd_class))
def main(args): # ---------- SETTINGS ---------- nameInputRelPath = '<input_dir>' nameOutputRelPath = '<output_dir>' nameInputFiles = '*.nii.gz' def nameOutputFiles(in_name): return in_name.replace('<suffix_ini>', '<suffix_end>') # ---------- SETTINGS ---------- workDirsManager = WorkDirsManager(BASEDIR) BaseDataPath = workDirsManager.getNameBaseDataPath() InputPath = workDirsManager.getNameExistPath(BaseDataPath, nameInputRelPath) OutputPath = workDirsManager.getNameNewPath(BaseDataPath, nameOutputRelPath) listInputFiles = findFilesDirAndCheck(InputPath, nameInputFiles) for i, in_file in enumerate(listInputFiles): print("\nInput: \'%s\'..." % (basename(in_file))) in_array = FileReader.getImageArray(in_file) # ... # write here the code # ... out_array = None out_file = joinpathnames(OutputPath, nameOutputFiles(basename(in_file))) print("Output: \'%s\', of dims \'%s\'..." % (basename(out_file), str(out_array.shape))) FileReader.writeImageArray(out_file, out_array)
def main(args): # First thing, set session in the selected(s) devices: CPU or GPU set_session_in_selected_device(use_GPU_device=True, type_GPU_installed=args.typeGPUinstalled) # ---------- SETTINGS ---------- nameModelsRelPath = args.modelsdir # Get the file list: nameImagesFiles = 'images*' + getFileExtension(FORMATTRAINDATA) nameGroundTruthFiles = 'grndtru*' + getFileExtension(FORMATTRAINDATA) # ---------- SETTINGS ---------- workDirsManager = WorkDirsManager(args.basedir) TrainingDataPath = workDirsManager.getNameExistPath( workDirsManager.getNameTrainingDataPath()) if args.use_restartModel: ModelsPath = workDirsManager.getNameExistPath(args.basedir, nameModelsRelPath) else: ModelsPath = workDirsManager.getNameUpdatePath(args.basedir, nameModelsRelPath) listTrainImagesFiles = findFilesDir(TrainingDataPath, nameImagesFiles) listTrainGroundTruthFiles = findFilesDir(TrainingDataPath, nameGroundTruthFiles) if args.useValidationData: ValidationDataPath = workDirsManager.getNameExistPath( workDirsManager.getNameValidationDataPath()) listValidImagesFiles = findFilesDir(ValidationDataPath, nameImagesFiles) listValidGroundTruthFiles = findFilesDir(ValidationDataPath, nameGroundTruthFiles) if not listValidImagesFiles or not listValidGroundTruthFiles: use_validation_data = False message = "No validation data used for training the model..." CatchWarningException(message) else: use_validation_data = True else: use_validation_data = False # BUILDING MODEL # ---------------------------------------------- print("_" * 30) print("Building model...") print("_" * 30) if args.use_restartModel: initial_epoch = args.epoch_restart args.num_epochs += initial_epoch else: initial_epoch = 0 if TYPE_DNNLIBRARY_USED == 'Keras': if (not args.use_restartModel) or (args.use_restartModel and args.restart_only_weights): model_constructor = DICTAVAILMODELS3D( IMAGES_DIMS_Z_X_Y, tailored_build_model=args.tailored_build_model, num_layers=args.num_layers, num_featmaps_base=args.num_featmaps_base, type_network=args.type_network, type_activate_hidden=args.type_activate_hidden, type_activate_output=args.type_activate_output, type_padding_convol=args.type_padding_convol, is_disable_convol_pooling_lastlayer=args. disable_convol_pooling_lastlayer, isuse_dropout=args.isUse_dropout, isuse_batchnormalize=args.isUse_batchnormalize) optimizer = DICTAVAILOPTIMIZERS(args.optimizer, lr=args.learn_rate) loss_fun = DICTAVAILLOSSFUNS( args.lossfun, is_masks_exclude=args.masksToRegionInterest).loss metrics = [ DICTAVAILMETRICFUNS(imetrics, is_masks_exclude=args.masksToRegionInterest ).get_renamed_compute() for imetrics in args.listmetrics ] model = model_constructor.get_model() # compile model model.compile(optimizer=optimizer, loss=loss_fun, metrics=metrics) # output model summary model.summary() if args.use_restartModel: print("Loading saved weights and restarting...") modelSavedPath = joinpathnames( ModelsPath, 'model_' + args.restart_modelFile + '.hdf5') print("Restarting from file: \'%s\'..." % (modelSavedPath)) model.load_weights(modelSavedPath) else: #args.use_restartModel and args.restart_only_weights: print( "Loading full model: weights, optimizer, loss, metrics ... and restarting..." ) modelSavedPath = joinpathnames( ModelsPath, 'model_' + args.restart_modelFile + '.hdf5') print("Restarting from file: \'%s\'..." % (modelSavedPath)) loss_fun = DICTAVAILLOSSFUNS( args.lossfun, is_masks_exclude=args.masksToRegionInterest).loss metrics = [ DICTAVAILMETRICFUNS(imetrics, is_masks_exclude=args.masksToRegionInterest ).get_renamed_compute() for imetrics in args.listmetrics ] custom_objects = dict( map(lambda fun: (fun.__name__, fun), [loss_fun] + metrics)) # load and compile model model = NeuralNetwork.get_load_saved_model( modelSavedPath, custom_objects=custom_objects) # Callbacks: callbacks_list = [] callbacks_list.append( RecordLossHistory(ModelsPath, [ DICTAVAILMETRICFUNS(imetrics, is_masks_exclude=args.masksToRegionInterest ).get_renamed_compute() for imetrics in args.listmetrics ])) filename = joinpathnames( ModelsPath, 'model_{epoch:02d}_{loss:.5f}_{val_loss:.5f}.hdf5') callbacks_list.append( callbacks.ModelCheckpoint(filename, monitor='loss', verbose=0)) # callbacks_list.append(callbacks.EarlyStopping(monitor='val_loss', patience=10, mode='max')) # output model summary model.summary() elif TYPE_DNNLIBRARY_USED == 'Pytorch': if (not args.use_restartModel) or (args.use_restartModel and args.restart_only_weights): model_net = DICTAVAILMODELS3D(IMAGES_DIMS_Z_X_Y) optimizer = DICTAVAILOPTIMIZERS(args.optimizer, model_net.parameters(), lr=args.learn_rate) loss_fun = DICTAVAILLOSSFUNS( args.lossfun, is_masks_exclude=args.masksToRegionInterest) trainer = Trainer(model_net, optimizer, loss_fun) if args.use_restartModel: print("Loading saved weights and restarting...") modelSavedPath = joinpathnames( ModelsPath, 'model_' + args.restart_modelFile + '.pt') print("Restarting from file: \'%s\'..." % (modelSavedPath)) trainer.load_model_only_weights(modelSavedPath) else: #args.use_restartModel and args.restart_only_weights: print( "Loading full model: weights, optimizer, loss, metrics ... and restarting..." ) modelSavedPath = joinpathnames( ModelsPath, 'model_' + args.restart_modelFile + '.pt') print("Restarting from file: \'%s\'..." % (modelSavedPath)) trainer = Trainer.load_model_full(modelSavedPath) trainer.setup_losshistory_filepath( ModelsPath, isexists_lossfile=args.use_restartModel) trainer.setup_validate_model(freq_validate_model=FREQVALIDATEMODEL) trainer.setup_savemodel_filepath( ModelsPath, type_save_models='full_model', freq_save_intermodels=FREQSAVEINTERMODELS) # output model summary #trainer.get_summary_model() # ---------------------------------------------- # LOADING DATA # ---------------------------------------------- print("-" * 30) print("Loading data...") print("-" * 30) print("Load Training data...") if (args.slidingWindowImages or args.transformationImages or args.elasticDeformationImages): print( "Generate Training images with Batch Generator of Training data..." ) (train_xData, train_yData) = LoadDataManager.loadData_ListFiles( listTrainImagesFiles, listTrainGroundTruthFiles) train_images_generator = getImagesDataGenerator3D( args.slidingWindowImages, args.prop_overlap_Z_X_Y, args.transformationImages, args.elasticDeformationImages) train_batch_data_generator = TrainingBatchDataGenerator( IMAGES_DIMS_Z_X_Y, train_xData, train_yData, train_images_generator, batch_size=args.batch_size, shuffle=SHUFFLETRAINDATA) print("Number volumes: %s. Total Data batches generated: %s..." % (len(listTrainImagesFiles), len(train_batch_data_generator))) else: (train_xData, train_yData ) = LoadDataManagerInBatches(IMAGES_DIMS_Z_X_Y).loadData_ListFiles( listTrainImagesFiles, listTrainGroundTruthFiles) print("Number volumes: %s. Total Data batches generated: %s..." % (len(listTrainImagesFiles), len(train_xData))) if use_validation_data: print("Load Validation data...") if (args.slidingWindowImages or args.transformationImages or args.elasticDeformationImages): print( "Generate Validation images with Batch Generator of Validation data..." ) args.transformationImages = args.transformationImages and args.useTransformOnValidationData args.elasticDeformationImages = args.elasticDeformationImages and args.useTransformOnValidationData (valid_xData, valid_yData) = LoadDataManager.loadData_ListFiles( listValidImagesFiles, listValidGroundTruthFiles) valid_images_generator = getImagesDataGenerator3D( args.slidingWindowImages, args.prop_overlap_Z_X_Y, args.transformationImages, args.elasticDeformationImages) valid_batch_data_generator = TrainingBatchDataGenerator( IMAGES_DIMS_Z_X_Y, valid_xData, valid_yData, valid_images_generator, batch_size=args.batch_size, shuffle=SHUFFLETRAINDATA) validation_data = valid_batch_data_generator print("Number volumes: %s. Total Data batches generated: %s..." % (len(listValidImagesFiles), len(valid_batch_data_generator))) else: (valid_xData, valid_yData) = LoadDataManagerInBatches( IMAGES_DIMS_Z_X_Y).loadData_ListFiles( listValidImagesFiles, listValidGroundTruthFiles) validation_data = (valid_xData, valid_yData) print("Number volumes: %s. Total Data batches generated: %s..." % (len(listTrainImagesFiles), len(valid_xData))) else: validation_data = None # TRAINING MODEL # ---------------------------------------------- print("-" * 30) print("Training model...") print("-" * 30) if TYPE_DNNLIBRARY_USED == 'Keras': if (args.slidingWindowImages or args.transformationImages): model.fit_generator(train_batch_data_generator, nb_epoch=args.num_epochs, steps_per_epoch=args.max_steps_epoch, verbose=1, callbacks=callbacks_list, validation_data=validation_data, shuffle=SHUFFLETRAINDATA, initial_epoch=initial_epoch) else: model.fit(train_xData, train_yData, batch_size=args.batch_size, epochs=args.num_epochs, steps_per_epoch=args.max_steps_epoch, verbose=1, callbacks=callbacks_list, validation_data=validation_data, shuffle=SHUFFLETRAINDATA, initial_epoch=initial_epoch) elif TYPE_DNNLIBRARY_USED == 'Pytorch': trainer.train(train_batch_data_generator, num_epochs=args.num_epochs, max_steps_epoch=args.max_steps_epoch, valid_data_generator=validation_data, initial_epoch=initial_epoch)
def main(args): # ---------- SETTINGS ---------- nameInputRelPath = 'RawImages' nameInputFiles = '*.dcm' nameOrigVoxelSize_FileNpy = 'original_vozelSize.npy' nameOrigVoxelSize_FileCsv = 'original_vozelSize.csv' nameRescaleFactors_FileNpy = 'rescaleFactors_images_0.6x0.6x0.6.npy' nameRescaleFactors_FileCsv = 'rescaleFactors_images_0.6x0.6x0.6.csv' # ---------- SETTINGS ---------- workDirsManager = WorkDirsManager(BASEDIR) BaseDataPath = workDirsManager.getNameBaseDataPath() InputPath = workDirsManager.getNameExistPath(BaseDataPath, nameInputRelPath) listInputFiles = findFilesDirAndCheck(InputPath, nameInputFiles) dict_voxelSizes = OrderedDict() for i, in_file in enumerate(listInputFiles): print("\nInput: \'%s\'..." % (basename(in_file))) voxel_size = DICOMreader.getVoxelSize(in_file) print("Voxel Size: \'%s\'..." % (str(voxel_size))) dict_voxelSizes[filenamenoextension(in_file)] = voxel_size #endfor # Save dictionary in file nameoutfile = joinpathnames(BaseDataPath, nameOrigVoxelSize_FileNpy) saveDictionary(nameoutfile, dict_voxelSizes) nameoutfile = joinpathnames(BaseDataPath, nameOrigVoxelSize_FileCsv) saveDictionary_csv(nameoutfile, dict_voxelSizes) data = np.array(dict_voxelSizes.values()) mean = np.mean(data, axis=0) print("Mean value: \'%s\'..." % (mean)) median = np.median(data, axis=0) print("Median value: \'%s\'..." % (median)) if args.fixedRescaleRes: final_rescale_res = args.fixedRescaleRes else: #if not fixed scale specified, take median over dataset final_rescale_res = median print("Final aimed resolution: \'%s\'..." % (str(final_rescale_res))) dict_rescaleFactors = OrderedDict() for key, value in dict_voxelSizes.iteritems(): print("\nKey: \'%s\'..." % (key)) rescale_factor = tuple(np.array(value) / np.array(final_rescale_res)) print("Computed rescale factor: \'%s\'..." % (str(rescale_factor))) dict_rescaleFactors[key] = rescale_factor #endfor # Save dictionary in file nameoutfile = joinpathnames(BaseDataPath, nameRescaleFactors_FileNpy) saveDictionary(nameoutfile, dict_rescaleFactors) nameoutfile = joinpathnames(BaseDataPath, nameRescaleFactors_FileCsv) saveDictionary_csv(nameoutfile, dict_rescaleFactors)
def main(args): # ---------- SETTINGS ---------- nameRawImagesRelPath = 'RawImages' nameComputeMasksRelPath = 'ProbNnetoutMasks' # Get the file list: nameImagesFiles = '*.dcm' nameOutMasksFiles = lambda in_name: filenamenoextension( in_name) + '_probnnetout.nii.gz' # ---------- SETTINGS ---------- workDirsManager = WorkDirsManager(args.basedir) BaseDataPath = workDirsManager.getNameBaseDataPath() InputImagesPath = workDirsManager.getNameExistPath(BaseDataPath, nameRawImagesRelPath) ComputeMasksPath = workDirsManager.getNameNewPath(BaseDataPath, nameComputeMasksRelPath) listImagesFiles = findFilesDir(InputImagesPath, nameImagesFiles) nbImagesFiles = len(listImagesFiles) # Retrieve training model modelConstructor = DICTAVAILNETWORKS3D(IMAGES_DIMS_Z_X_Y, args.model) modelConstructor.type_padding = 'valid' if args.size_out_nnet == None: args.size_out_nnet = modelConstructor.get_size_output_full_Unet() print( "For input images of size: %s; Output of Neural Networks_Keras are images of size: %s..." % (IMAGES_DIMS_Z_X_Y, args.size_out_nnet)) for images_file in listImagesFiles: print('\'%s\'...' % (images_file)) images_array = FileReader.getImageArray(images_file) if (args.invertImageAxial): images_array = FlippingImages.compute(images_array, axis=0) print("Compute masks proportion output...") if (args.slidingWindowImages): images_reconstructor = SlidingWindowReconstructorImages3D( IMAGES_DIMS_Z_X_Y, images_array.shape, args.prop_overlap_Z_X_Y, size_outUnet_sample=args.size_out_nnet) else: images_reconstructor = SlidingWindowReconstructorImages3D( IMAGES_DIMS_Z_X_Y, images_array.shape, (0.0, 0.0, 0.0), size_outUnet_sample=args.size_out_nnet) masks_probValidConvNnet_output_array = images_reconstructor.get_filtering_map_array( ) out_masksFilename = joinpathnames(ComputeMasksPath, nameOutMasksFiles(images_file)) FileReader.writeImageArray(out_masksFilename, masks_probValidConvNnet_output_array)
def main(args): # ---------- SETTINGS ---------- nameInputMasksRelPath = 'Myrian-opfronted_3b_i5' nameCentrelinesRelPath = 'Myrian-opfronted_3b_i5' namePredictMasksFiles = '*thres0-5.nii.gz' nameInputMasksFiles = '*outerwall.nii.gz' nameCentrelinesFiles = '*centrelines_smoothed.nii.gz' # template search files tempSearchInputFiles = 'av[0-9]*' # create file to save FROC values temp_outfilename = 'res_completeness_voleakage.txt' # ---------- SETTINGS ---------- workDirsManager = WorkDirsManager(args.basedir) BaseDataPath = workDirsManager.getNameBaseDataPath() InputPredictMasksPath= workDirsManager.getNameExistPath(args.basedir, args.predictionsdir) InputMasksPath = workDirsManager.getNameExistPath(BaseDataPath, nameInputMasksRelPath) CentrelinesPath = workDirsManager.getNameExistPath(BaseDataPath, nameCentrelinesRelPath) listPredictMasksFiles = findFilesDir(InputPredictMasksPath,namePredictMasksFiles) listGrndTruthMasksFiles = findFilesDir(InputMasksPath, nameInputMasksFiles) listCentrelinesFiles = findFilesDir(CentrelinesPath, nameCentrelinesFiles) nbPredictionsFiles = len(listPredictMasksFiles) nbGrndTruthMasksFiles = len(listGrndTruthMasksFiles) nbCentrelinesFiles = len(listCentrelinesFiles) # Run checkers if (nbPredictionsFiles == 0): message = "0 Predictions found in dir \'%s\'" %(InputPredictMasksPath) CatchErrorException(message) if (nbGrndTruthMasksFiles == 0): message = "0 Ground-truth Masks found in dir \'%s\'" %(InputMasksPath) CatchErrorException(message) if (nbGrndTruthMasksFiles != nbCentrelinesFiles): message = "num Ground-truth Masks %i not equal to num Centrelines %i" %(nbGrndTruthMasksFiles, nbCentrelinesFiles) CatchErrorException(message) out_filename = joinpathnames(InputPredictMasksPath, temp_outfilename) fout = open(out_filename, 'w') strheader = '/case/ /completeness/ /volume_leakage/ /dice_coeff/' +'\n' fout.write(strheader) completeness_list = [] volumeleakage_list = [] dicecoeff_list = [] for i, predict_masks_file in enumerate(listPredictMasksFiles): print('\'%s\'...' %(predict_masks_file)) name_prefix_case = getExtractSubstringPattern(basename(predict_masks_file), tempSearchInputFiles) for iterfile_1, iterfile_2 in zip(listGrndTruthMasksFiles, listCentrelinesFiles): if name_prefix_case in iterfile_1: grndtruth_masks_file = iterfile_1 centrelines_file = iterfile_2 #endfor print("assigned to \'%s\' and \'%s\'..." %(basename(grndtruth_masks_file), basename(centrelines_file))) predict_masks_array = FileReader.getImageArray(predict_masks_file) grndtruth_masks_array = FileReader.getImageArray(grndtruth_masks_file) centrelines_array = FileReader.getImageArray(centrelines_file) dicecoeff = DiceCoefficient().compute_np(grndtruth_masks_array, predict_masks_array) completeness = AirwayCompleteness().compute_np(centrelines_array, predict_masks_array) * 100 volumeleakage = AirwayVolumeLeakage().compute_np(grndtruth_masks_array, predict_masks_array) * 100 completeness_list .append(completeness) volumeleakage_list.append(volumeleakage) dicecoeff_list .append(dicecoeff) strdata = '\'%s\' %0.3f %0.3f %0.6f\n'%(name_prefix_case, completeness, volumeleakage, dicecoeff) fout.write(strdata) print("Computed Dice coefficient: \'%s\'..." %(dicecoeff)) print("Computed Completeness: \'%s\'..." %(completeness)) print("Computed Volume Leakage: \'%s\'..." % (volumeleakage)) #endfor # completeness_mean = np.mean(completeness_list) # volumeleakage_mean= np.mean(volumeleakage_list) # dicecoeff_mean = np.mean(dicecoeff_list) # # strdata = str(name_prefix_case) + ' ' + str(completeness_mean) + ' ' + str(volumeleakage_mean) + ' ' + str(dicecoeff_mean) +'\n' # fout.write(strdata) # # print("Mean Dice coefficient: %s..." % (dicecoeff)) # print("Mean Completeness: %s..." % (completeness)) # print("Mean Volume Leakage 1: %s..." % (volumeleakage)) fout.close()
def main(args): # ---------- SETTINGS ---------- nameInputImagesRelPath = 'Images_Full' nameInputGroundTruthRelPath = 'Airways_DistTrans_Full' nameInputRoiMasksRelPath = 'Airways_DilatedMasks_Full' nameOutputImagesRelPath = 'Images_WorkData_2' nameOutputGroundTruthRelPath = 'LumenDistTransClipped_WorkData' nameInputImagesFiles = '*.nii.gz' nameInputGroundTruthFiles = '*dist_clipdila_normal_power2.nii.gz' nameInputRoiMasksFiles = '*_dilated10.nii.gz' nameRescaleFactors = 'rescaleFactors_images.npy' nameCropBoundingBoxes = 'cropBoundingBoxes_images.npy' nameOutputImageFiles = 'images-%0.2i_dim%s' + getFileExtension( FORMATTRAINDATA) nameOutputGroundTruthFiles = 'grndtru-%0.2i_dim%s' + getFileExtension( FORMATTRAINDATA) if (args.saveVisualizeProcData): nameVisualOutputRelPath = 'VisualizeWorkData' nameOutputVisualFiles = lambda filename: basename(filename).replace( '.npz', '.nii.gz') # ---------- SETTINGS ---------- workDirsManager = WorkDirsManager(args.basedir) BaseDataPath = workDirsManager.getNameBaseDataPath() InputImagesPath = workDirsManager.getNameExistPath(BaseDataPath, nameInputImagesRelPath) InputGroundTruthPath = workDirsManager.getNameExistPath( BaseDataPath, nameInputGroundTruthRelPath) OutputImagesPath = workDirsManager.getNameNewPath(BaseDataPath, nameOutputImagesRelPath) OutputGroundTruthPath = workDirsManager.getNameNewPath( BaseDataPath, nameOutputGroundTruthRelPath) if (args.saveVisualizeProcData): VisualOutputPath = workDirsManager.getNameNewPath( BaseDataPath, nameVisualOutputRelPath) listInputImagesFiles = findFilesDirAndCheck(InputImagesPath, nameInputImagesFiles) listInputGroundTruthFiles = findFilesDirAndCheck( InputGroundTruthPath, nameInputGroundTruthFiles) if (len(listInputImagesFiles) != len(listInputGroundTruthFiles)): message = 'num files in dir 1 \'%s\', not equal to num files in dir 2 \'%i\'...' % ( len(listInputImagesFiles), len(listInputGroundTruthFiles)) CatchErrorException(message) if (args.masksToRegionInterest): InputRoiMasksPath = workDirsManager.getNameExistPath( BaseDataPath, nameInputRoiMasksRelPath) listInputRoiMaskFiles = findFilesDirAndCheck(InputRoiMasksPath, nameInputRoiMasksFiles) if (args.rescaleImages): dict_rescaleFactors = readDictionary( joinpathnames(BaseDataPath, nameRescaleFactors)) if (args.cropImages): dict_cropBoundingBoxes = readDictionary( joinpathnames(BaseDataPath, nameCropBoundingBoxes)) # START ANALYSIS # ------------------------------ print("-" * 30) print("Preprocessing...") print("-" * 30) for i, (in_image_file, in_grndtru_file) in enumerate( zip(listInputImagesFiles, listInputGroundTruthFiles)): print("\nInput: \'%s\'..." % (basename(in_image_file))) print("And: \'%s\'..." % (basename(in_grndtru_file))) (image_array, grndtru_array) = FileReader.get2ImageArraysAndCheck( in_image_file, in_grndtru_file) print("Original dims : \'%s\'..." % (str(image_array.shape))) if (args.isClassificationData): print("Convert to binary masks (0, 1)...") grndtru_array = OperationBinaryMasks.process_masks(grndtru_array) if (args.masksToRegionInterest): print("Mask input to RoI: lungs...") in_roimask_file = listInputRoiMaskFiles[i] print("RoI mask (lungs) file: \'%s\'..." % (basename(in_roimask_file))) roimask_array = FileReader.getImageArray(in_roimask_file) grndtru_array = OperationBinaryMasks.apply_mask_exclude_voxels( grndtru_array, roimask_array) if (args.rescaleImages): rescale_factor = dict_rescaleFactors[filenamenoextension( in_image_file)] print("Rescale image with a factor: \'%s\'..." % (str(rescale_factor))) image_array = RescaleImages.compute3D(image_array, rescale_factor) grndtru_array = RescaleImages.compute3D(grndtru_array, rescale_factor) print("Final dims: %s..." % (str(image_array.shape))) if (args.cropImages): crop_bounding_box = dict_cropBoundingBoxes[filenamenoextension( in_image_file)] print("Crop image to bounding-box: \'%s\'..." % (str(crop_bounding_box))) image_array = CropImages.compute3D(image_array, crop_bounding_box) grndtru_array = CropImages.compute3D(grndtru_array, crop_bounding_box) print("Final dims: %s..." % (str(image_array.shape))) # if (args.extendSizeImages): # print("Extend images to fixed size \'%s\':..." %(str(CROPSIZEBOUNDINGBOX))) # size_new_image = (image_array.shape[0], CROPSIZEBOUNDINGBOX[0], CROPSIZEBOUNDINGBOX[1]) # backgr_val_images = -1000 # backgr_val_masks = -1 if args.masksToRegionInterest else 0 # bounding_box = dict_bounding_boxes[filenamenoextension(in_image_file)] # # image_array = ExtendImages.compute3D(image_array, bounding_box, size_new_image, background_value=backgr_val_images) # grndtru_array = ExtendImages.compute3D(grndtru_array, bounding_box, size_new_image, background_value=backgr_val_masks) # print("Final dims: %s..." % (str(image_array.shape))) out_image_file = joinpathnames( OutputImagesPath, nameOutputImageFiles % (i + 1, tuple2str(image_array.shape))) out_grndtru_file = joinpathnames( OutputGroundTruthPath, nameOutputGroundTruthFiles % (i + 1, tuple2str(grndtru_array.shape))) print("Output: \'%s\', of dims \'%s\'..." % (basename(out_image_file), (image_array.shape))) print("And: \'%s\', of dims \'%s\'..." % (basename(out_grndtru_file), str(grndtru_array.shape))) FileReader.writeImageArray(out_image_file, image_array) FileReader.writeImageArray(out_grndtru_file, grndtru_array) if (args.saveVisualizeProcData): print("Saving working data to visualize...") out_image_file = joinpathnames( VisualOutputPath, nameOutputVisualFiles(out_image_file)) out_grndtru_file = joinpathnames( VisualOutputPath, nameOutputVisualFiles(out_grndtru_file)) FileReader.writeImageArray(out_image_file, image_array) FileReader.writeImageArray(out_grndtru_file, grndtru_array)
def main(args): # ---------- SETTINGS ---------- max_size_bounding_box = (0, 0, 0) min_size_bounding_box = (1.0e+03, 1.0e+03, 1.0e+03) voxels_buffer_border = (0, 0, 0, 0) nameInputRelPath = 'Images_Rescaled_Full' nameRoiMaskRelPath = 'Lungs_Rescaled_Full' nameInputFiles = '*.nii.gz' nameRoiMasksFiles = '*.nii.gz' nameCropBoundingBoxes_FileNpy = 'cropBoundingBoxes_352x240_rescaled0.6x0.6x0.6_images.npy' nameCropBoundingBoxes_FileCsv = 'cropBoundingBoxes_352x240_rescaled0.6x0.6x0.6_images.csv' # ---------- SETTINGS ---------- workDirsManager = WorkDirsManager(args.basedir) BaseDataPath = workDirsManager.getNameBaseDataPath() InputPath = workDirsManager.getNameExistPath(BaseDataPath, nameInputRelPath) RoiMasksPath = workDirsManager.getNameExistPath(BaseDataPath, nameRoiMaskRelPath) listInputImageFiles = findFilesDirAndCheck(InputPath, nameInputFiles) listRoiMaskFiles = findFilesDirAndCheck(RoiMasksPath, nameRoiMasksFiles) dict_cropBoundingBoxes = OrderedDict() for in_file, roimask_file in zip(listInputImageFiles, listRoiMaskFiles): print("\nInput: \'%s\'..." % (basename(in_file))) print("RoI mask (lungs) file: \'%s\'..." % (basename(in_file))) roimask_array = FileReader.getImageArray(roimask_file) bounding_box = BoundingBoxes.compute_bounding_box_contain_masks_with_border_effects_2D( roimask_array, voxels_buffer_border=voxels_buffer_border) size_bounding_box = BoundingBoxes.compute_size_bounding_box( bounding_box) print("Bounding-box: \'%s\', of size: \'%s\'" % (bounding_box, size_bounding_box)) max_size_bounding_box = BoundingBoxes.compute_max_size_bounding_box( size_bounding_box, max_size_bounding_box) # Compute new bounding-box, of fixed size 'args.cropSizeBoundingBox', and with same center as original 'bounding_box' processed_bounding_box = BoundingBoxes.compute_bounding_box_centered_bounding_box_2D( bounding_box, args.cropSizeBoundingBox, roimask_array.shape) size_processed_bounding_box = BoundingBoxes.compute_size_bounding_box( processed_bounding_box) print("Processed bounding-box: \'%s\', of size: \'%s\'" % (processed_bounding_box, size_processed_bounding_box)) dict_cropBoundingBoxes[filenamenoextension( in_file)] = processed_bounding_box #endfor print("max size bounding-box found: \'%s\'; set size bounding-box \'%s\'" % (max_size_bounding_box, args.cropSizeBoundingBox)) # Save dictionary in file nameoutfile = joinpathnames(BaseDataPath, nameCropBoundingBoxes_FileNpy) saveDictionary(nameoutfile, dict_cropBoundingBoxes) nameoutfile = joinpathnames(BaseDataPath, nameCropBoundingBoxes_FileCsv) saveDictionary_csv(nameoutfile, dict_cropBoundingBoxes)
def main(args): # ---------- SETTINGS ---------- nameInputPredictionsRelPath = args.predictionsdir nameInputReferMasksRelPath = 'Airways_Full' nameInputRoiMasksRelPath = 'Lungs_Full' nameInputCentrelinesRelPath = 'Centrelines_Full' nameOutputPredictionsRelPath = nameInputPredictionsRelPath nameInputPredictionsFiles = 'predict-probmaps_*.nii.gz' nameInputReferMasksFiles = '*_lumen.nii.gz' nameInputRoiMasksFiles = '*_lungs.nii.gz' nameInputCentrelinesFiles = '*_centrelines.nii.gz' # prefixPatternInputFiles = 'av[0-9][0-9]*' if (args.calcMasksThresholding): suffixPostProcessThreshold = '_thres%s' % (str( args.thresholdValue).replace('.', '-')) if (args.attachTracheaToCalcMasks): suffixPostProcessThreshold += '_withtrachea' else: suffixPostProcessThreshold += '_notrachea' else: suffixPostProcessThreshold = '' nameAccuracyPredictFiles = 'predict_accuracy_tests%s.txt' % ( suffixPostProcessThreshold) def nameOutputFiles(in_name, in_acc): out_name = filenamenoextension(in_name).replace( 'predict-probmaps', 'predict-binmasks') + '_acc%2.0f' % (np.round(100 * in_acc)) return out_name + '%s.nii.gz' % (suffixPostProcessThreshold) # ---------- SETTINGS ---------- workDirsManager = WorkDirsManager(args.basedir) BaseDataPath = workDirsManager.getNameBaseDataPath() InputPredictionsPath = workDirsManager.getNameExistPath( args.basedir, nameInputPredictionsRelPath) InputReferenceMasksPath = workDirsManager.getNameExistPath( BaseDataPath, nameInputReferMasksRelPath) OutputPredictionsPath = workDirsManager.getNameNewPath( args.basedir, nameOutputPredictionsRelPath) listInputPredictionsFiles = findFilesDirAndCheck( InputPredictionsPath, nameInputPredictionsFiles) listInputReferenceMasksFiles = findFilesDirAndCheck( InputReferenceMasksPath, nameInputReferMasksFiles) if (args.masksToRegionInterest): InputRoiMasksPath = workDirsManager.getNameExistPath( BaseDataPath, nameInputRoiMasksRelPath) listInputRoiMasksFiles = findFilesDirAndCheck(InputRoiMasksPath, nameInputRoiMasksFiles) if (args.attachTracheaToCalcMasks): def compute_trachea_masks(refermask_array, roimask_array): return np.where(roimask_array == 1, 0, refermask_array) listPostProcessMetrics = OrderedDict() list_isUseCenlineFiles = [] for imetrics in args.listPostprocessMetrics: listPostProcessMetrics[imetrics] = DICTAVAILMETRICFUNS( imetrics).compute_np_safememory list_isUseCenlineFiles.append( DICTAVAILMETRICFUNS(imetrics)._is_cenline_grndtru) #endfor isuse_centreline_files = any(list_isUseCenlineFiles) if isuse_centreline_files: InputCentrelinesPath = workDirsManager.getNameExistPath( BaseDataPath, nameInputCentrelinesRelPath) listInputCentrelinesFiles = findFilesDirAndCheck( InputCentrelinesPath, nameInputCentrelinesFiles) out_predictAccuracyFilename = joinpathnames(InputPredictionsPath, nameAccuracyPredictFiles) fout = open(out_predictAccuracyFilename, 'w') strheader = '/case/ ' + ' '.join( ['/%s/' % (key) for (key, _) in listPostProcessMetrics.iteritems()]) + '\n' fout.write(strheader) for i, in_prediction_file in enumerate(listInputPredictionsFiles): print("\nInput: \'%s\'..." % (basename(in_prediction_file))) in_refermask_file = findFileWithSamePrefix( basename(in_prediction_file).replace('predict-probmaps', ''), listInputReferenceMasksFiles, prefix_pattern='vol[0-9][0-9]_') print("Refer mask file: \'%s\'..." % (basename(in_refermask_file))) prediction_array = FileReader.getImageArray(in_prediction_file) refermask_array = FileReader.getImageArray(in_refermask_file) print("Predictions of size: %s..." % (str(prediction_array.shape))) if (args.calcMasksThresholding): print( "Compute prediction masks by thresholding probability maps to value %s..." % (args.thresholdValue)) prediction_array = ThresholdImages.compute(prediction_array, args.thresholdValue) if isuse_centreline_files: in_centreline_file = findFileWithSamePrefix( basename(in_prediction_file).replace('predict-probmaps', ''), listInputCentrelinesFiles, prefix_pattern='vol[0-9][0-9]_') print("Centrelines file: \'%s\'..." % (basename(in_centreline_file))) centrelines_array = FileReader.getImageArray(in_centreline_file) if (args.masksToRegionInterest): in_roimask_file = findFileWithSamePrefix( basename(in_prediction_file).replace('predict-probmaps', ''), listInputRoiMasksFiles, prefix_pattern='vol[0-9][0-9]_') print("RoI mask (lungs) file: \'%s\'..." % (basename(in_roimask_file))) roimask_array = FileReader.getImageArray(in_roimask_file) if (args.attachTracheaToCalcMasks): print("Attach trachea mask to computed prediction masks...") trachea_masks_array = compute_trachea_masks( refermask_array, roimask_array) prediction_array = OperationBinaryMasks.join_two_binmasks_one_image( prediction_array, trachea_masks_array) else: prediction_array = OperationBinaryMasks.apply_mask_exclude_voxels_fillzero( prediction_array, roimask_array) refermask_array = OperationBinaryMasks.apply_mask_exclude_voxels_fillzero( refermask_array, roimask_array) if isuse_centreline_files: centrelines_array = OperationBinaryMasks.apply_mask_exclude_voxels_fillzero( centrelines_array, roimask_array) # ---------- COMPUTE POST PROCESSING MEASURES ---------- list_postprocess_measures = OrderedDict() for i, (key, value) in enumerate(listPostProcessMetrics.iteritems()): if list_isUseCenlineFiles[i]: acc_value = value(centrelines_array, prediction_array) else: acc_value = value(refermask_array, prediction_array) list_postprocess_measures[key] = acc_value # endfor main_postprocess_accuracy = list_postprocess_measures.values()[0] # print list accuracies on screen and in file prefix_casename = getSubstringPatternFilename( basename(in_prediction_file), substr_pattern='vol[0-9][0-9]_')[:-1] strdata = '\'%s\'' % (prefix_casename) for (key, value) in list_postprocess_measures.iteritems(): print("Metric \'%s\': %s..." % (key, value)) strdata += ' %s' % (str(value)) #endfor strdata += '\n' fout.write(strdata) # ---------- COMPUTE POST PROCESSING MEASURES ---------- out_file = joinpathnames( OutputPredictionsPath, nameOutputFiles(basename(in_prediction_file), main_postprocess_accuracy)) print("Output: \'%s\', of dims \'%s\'..." % (basename(out_file), str(prediction_array.shape))) FileReader.writeImageArray(out_file, prediction_array) #endfor #close list accuracies file fout.close()
def main(args): # ---------- SETTINGS ---------- nameOrigImagesDataRelPath = 'Images_WorkData' nameOrigMasksDataRelPath = 'LumenDistTrans_WorkData' nameOriginImagesFiles = 'images*' + getFileExtension(FORMATTRAINDATA) nameOriginMasksFiles = 'grndtru*' + getFileExtension(FORMATTRAINDATA) # ---------- SETTINGS ---------- workDirsManager = WorkDirsManager(args.basedir) OrigImagesDataPath = workDirsManager.getNameExistPath( workDirsManager.getNameBaseDataPath(), nameOrigImagesDataRelPath) OrigGroundTruthDataPath = workDirsManager.getNameExistPath( workDirsManager.getNameBaseDataPath(), nameOrigMasksDataRelPath) TrainingDataPath = workDirsManager.getNameNewPath( workDirsManager.getNameTrainingDataPath()) ValidationDataPath = workDirsManager.getNameNewPath( workDirsManager.getNameValidationDataPath()) TestingDataPath = workDirsManager.getNameNewPath( workDirsManager.getNameTestingDataPath()) listImagesFiles = findFilesDir(OrigImagesDataPath, nameOriginImagesFiles) listGroundTruthFiles = findFilesDir(OrigGroundTruthDataPath, nameOriginMasksFiles) numImagesFiles = len(listImagesFiles) numGroundTruthFiles = len(listGroundTruthFiles) if (numImagesFiles != numGroundTruthFiles): message = "num image files \'%s\' not equal to num ground-truth files \'%s\'..." % ( numImagesFiles, numGroundTruthFiles) CatchErrorException(message) if (args.distribute_fixed_names): print("Split dataset with Fixed Names...") names_repeated = find_element_repeated_two_indexes_names( NAME_IMAGES_TRAINING, NAME_IMAGES_VALIDATION) names_repeated += find_element_repeated_two_indexes_names( NAME_IMAGES_TRAINING, NAME_IMAGES_TESTING) names_repeated += find_element_repeated_two_indexes_names( NAME_IMAGES_VALIDATION, NAME_IMAGES_TESTING) if names_repeated: message = "found names repeated in list Training / Validation / Testing names: %s" % ( names_repeated) CatchErrorException(message) indexesTraining = find_indexes_names_images_files( NAME_IMAGES_TRAINING, listImagesFiles) indexesValidation = find_indexes_names_images_files( NAME_IMAGES_VALIDATION, listImagesFiles) indexesTesting = find_indexes_names_images_files( NAME_IMAGES_TESTING, listImagesFiles) print( "Training (%s files)/ Validation (%s files)/ Testing (%s files)..." % (len(indexesTraining), len(indexesValidation), len(indexesTesting))) else: numTrainingFiles = int(args.prop_data_training * numImagesFiles) numValidationFiles = int(args.prop_data_validation * numImagesFiles) numTestingFiles = int(args.prop_data_testing * numImagesFiles) print( "Training (%s files)/ Validation (%s files)/ Testing (%s files)..." % (numTrainingFiles, numValidationFiles, numTestingFiles)) if (args.distribute_random): print("Split dataset Randomly...") indexesAllFiles = np.random.choice(range(numImagesFiles), size=numImagesFiles, replace=False) else: print("Split dataset In Order...") indexesAllFiles = range(numImagesFiles) indexesTraining = indexesAllFiles[0:numTrainingFiles] indexesValidation = indexesAllFiles[numTrainingFiles:numTrainingFiles + numValidationFiles] indexesTesting = indexesAllFiles[numTrainingFiles + numValidationFiles::] print("Files assigned to Training Data: \'%s\'" % ([basename(listImagesFiles[index]) for index in indexesTraining])) print("Files assigned to Validation Data: \'%s\'" % ([basename(listImagesFiles[index]) for index in indexesValidation])) print("Files assigned to Testing Data: \'%s\'" % ([basename(listImagesFiles[index]) for index in indexesTesting])) # ******************** TRAINING DATA ******************** for index in indexesTraining: makelink( listImagesFiles[index], joinpathnames(TrainingDataPath, basename(listImagesFiles[index]))) makelink( listGroundTruthFiles[index], joinpathnames(TrainingDataPath, basename(listGroundTruthFiles[index]))) #endfor # ******************** TRAINING DATA ******************** # ******************** VALIDATION DATA ******************** for index in indexesValidation: makelink( listImagesFiles[index], joinpathnames(ValidationDataPath, basename(listImagesFiles[index]))) makelink( listGroundTruthFiles[index], joinpathnames(ValidationDataPath, basename(listGroundTruthFiles[index]))) #endfor # ******************** VALIDATION DATA ******************** # ******************** TESTING DATA ******************** for index in indexesTesting: makelink( listImagesFiles[index], joinpathnames(TestingDataPath, basename(listImagesFiles[index]))) makelink( listGroundTruthFiles[index], joinpathnames(TestingDataPath, basename(listGroundTruthFiles[index])))
def main(args): # ---------- SETTINGS ---------- nameInputImagesRelPath = 'RawAirways' nameInputRoiMasksRelPath = 'RawLungs' nameReferenceImgRelPath = 'RawImages' nameOutputImagesRelPath = 'Airways_Rescaled_0.6x0.6x0.6_Full' nameOutputRoiMasksRelPath = 'Lungs_Rescaled_0.6x0.6x0.6_Full' nameInputImagesFiles = '*surface0.dcm' nameInputRoiMasksFiles = '*.dcm' nameReferenceImgFiles = '*.dcm' # prefixPatternInputFiles = 'av[0-9][0-9]*' nameRescaleFactors = 'rescaleFactors_images_0.6x0.6x0.6.npy' def nameOutputImagesFiles(in_name): in_name = in_name.replace('surface0', 'lumen') in_name = in_name.replace('surface1', 'outwall') #in_name = in_name.replace('-result','_noopfront') #in_name = in_name.replace('-centrelines','_centrelines') return filenamenoextension(in_name) + '.nii.gz' nameOutputRoiMasksFiles = lambda in_name: filenamenoextension( in_name).replace('-lungs', '_lungs') + '.nii.gz' nameOutputImagesMaskedToRoiFiles = lambda in_name: filenamenoextension( nameOutputImagesFiles(in_name)) + '_maskedToLungs.nii.gz' # ---------- SETTINGS ---------- workDirsManager = WorkDirsManager(args.basedir) BaseDataPath = workDirsManager.getNameBaseDataPath() InputImagesPath = workDirsManager.getNameExistPath(BaseDataPath, nameInputImagesRelPath) ReferenceImgPath = workDirsManager.getNameExistPath( BaseDataPath, nameReferenceImgRelPath) OutputImagesPath = workDirsManager.getNameNewPath(BaseDataPath, nameOutputImagesRelPath) listInputImagesFiles = findFilesDirAndCheck(InputImagesPath, nameInputImagesFiles) listReferenceImgFiles = findFilesDirAndCheck(ReferenceImgPath, nameReferenceImgFiles) if (args.masksToRegionInterest): InputRoiMasksPath = workDirsManager.getNameExistPath( BaseDataPath, nameInputRoiMasksRelPath) OutputRoiMasksPath = workDirsManager.getNameNewPath( BaseDataPath, nameOutputRoiMasksRelPath) listInputRoiMasksFiles = findFilesDirAndCheck(InputRoiMasksPath, nameInputRoiMasksFiles) if (args.rescaleImages): dict_rescaleFactors = readDictionary( joinpathnames(BaseDataPath, nameRescaleFactors)) for i, in_image_file in enumerate(listInputImagesFiles): print("\nInput: \'%s\'..." % (basename(in_image_file))) image_array = FileReader.getImageArray(in_image_file) if (args.isClassificationData): print("Convert to binary masks (0, 1)...") image_array = OperationBinaryMasks.process_masks(image_array) if (args.masksToRegionInterest): print("Mask input to RoI: lungs...") in_roimask_file = findFileWithSamePrefix(basename(in_image_file), listInputRoiMasksFiles) print("RoI mask (lungs) file: \'%s\'..." % (basename(in_roimask_file))) roimask_array = FileReader.getImageArray(in_roimask_file) if (args.isClassificationData): print("Convert to binary masks (0, 1)...") roimask_array = OperationBinaryMasks.process_masks( roimask_array) # Image masked to RoI: exclude voxels not contained in lungs image_maskedToRoi_array = OperationBinaryMasks.apply_mask_exclude_voxels_fillzero( image_array, roimask_array) if (args.rescaleImages): in_referimg_file = findFileWithSamePrefix(basename(in_image_file), listReferenceImgFiles) rescale_factor = dict_rescaleFactors[filenamenoextension( in_referimg_file)] print("Rescale image with a factor: \'%s\'..." % (str(rescale_factor))) image_array = RescaleImages.compute3D(image_array, rescale_factor, is_binary_mask=True) print("Final dims: %s..." % (str(image_array.shape))) if (args.masksToRegionInterest): roimask_array = RescaleImages.compute3D(roimask_array, rescale_factor, is_binary_mask=True) image_maskedToRoi_array = RescaleImages.compute3D( image_maskedToRoi_array, rescale_factor, is_binary_mask=True) out_file = joinpathnames( OutputImagesPath, nameOutputImagesFiles(basename(in_image_file))) print("Output: \'%s\', of dims \'%s\'..." % (basename(out_file), str(image_array.shape))) FileReader.writeImageArray(out_file, image_array) if (args.masksToRegionInterest): out_roimask_file = joinpathnames( OutputRoiMasksPath, nameOutputRoiMasksFiles(basename(in_roimask_file))) out_maskedToRoi_file = joinpathnames( OutputImagesPath, nameOutputImagesMaskedToRoiFiles(basename(in_image_file))) FileReader.writeImageArray(out_roimask_file, roimask_array) FileReader.writeImageArray(out_maskedToRoi_file, image_maskedToRoi_array)
def main(args): # First thing, set session in the selected(s) devices: CPU or GPU set_session_in_selected_device(use_GPU_device=True, type_GPU_installed=args.typeGPUinstalled) # ---------- SETTINGS ---------- nameInputRoiMasksRelPath = 'Lungs_Full' nameReferenceImgRelPath = 'Images_Full' # Get the file list: nameImagesFiles = 'images*' + getFileExtension(FORMATTRAINDATA) nameGroundTruthFiles = 'grndtru*' + getFileExtension(FORMATTRAINDATA) nameInputRoiMasksFiles = '*_lungs.nii.gz' nameReferenceImgFiles = '*.nii.gz' nameRescaleFactors = 'rescaleFactors_images.npy' nameCropBoundingBoxes = 'cropBoundingBoxes_images.npy' nameOutputPredictionFiles = 'predict-probmaps_%s.nii.gz' if (args.saveFeatMapsLayers): nameOutputFeatureMapsDirs = 'featureMaps-%s_lay_%s' nameOutputFeatureMapsFiles = 'featmaps-%s_lay_%s_map%0.2i.nii.gz' # ---------- SETTINGS ---------- workDirsManager = WorkDirsManager(args.basedir) BaseDataPath = workDirsManager.getNameBaseDataPath() TestingDataPath = workDirsManager.getNameExistPath( workDirsManager.getNameDataPath(args.typedata)) ReferenceImgPath = workDirsManager.getNameExistPath( BaseDataPath, nameReferenceImgRelPath) ModelsPath = workDirsManager.getNameExistPath(args.basedir, args.modelsdir) OutputPredictionPath = workDirsManager.getNameNewPath( args.basedir, args.predictionsdir) listTestImagesFiles = findFilesDir(TestingDataPath, nameImagesFiles) listTestGroundTruthFiles = findFilesDir(TestingDataPath, nameGroundTruthFiles) listReferenceImgsFiles = findFilesDirAndCheck(ReferenceImgPath, nameReferenceImgFiles) if (args.masksToRegionInterest): InputRoiMasksPath = workDirsManager.getNameExistPath( BaseDataPath, nameInputRoiMasksRelPath) listInputRoiMasksFiles = findFilesDirAndCheck(InputRoiMasksPath, nameInputRoiMasksFiles) if (args.rescaleImages): dict_rescaleFactors = readDictionary( joinpathnames(BaseDataPath, nameRescaleFactors)) if (args.cropImages): dict_cropBoundingBoxes = readDictionary( joinpathnames(BaseDataPath, nameCropBoundingBoxes)) test_images_generator = getImagesDataGenerator3D( args.slidingWindowImages, args.prop_overlap_Z_X_Y, args.transformationImages, args.elasticDeformationImages) images_reconstructor = getImagesReconstructor3D( args.slidingWindowImages, args.prop_overlap_Z_X_Y, use_TransformationImages=False, isfilterImages=args.filterPredictProbMaps, prop_valid_outUnet=args.prop_valid_outUnet) # LOADING MODEL # ---------------------------------------------- print("-" * 30) print("Loading saved model...") print("-" * 30) if TYPE_DNNLIBRARY_USED == 'Keras': print( "Loading full model: weights, optimizer, loss, metrics ... and restarting..." ) modelSavedPath = joinpathnames( ModelsPath, 'model_' + args.prediction_modelFile + '.hdf5') print("Restarting from file: \'%s\'..." % (modelSavedPath)) loss_fun = DICTAVAILLOSSFUNS( args.lossfun, is_masks_exclude=args.masksToRegionInterest).loss metrics = [ DICTAVAILMETRICFUNS(imetrics, is_masks_exclude=args.masksToRegionInterest). get_renamed_compute() for imetrics in args.listmetrics ] custom_objects = dict( map(lambda fun: (fun.__name__, fun), [loss_fun] + metrics)) # load and compile model model = NeuralNetwork.get_load_saved_model( modelSavedPath, custom_objects=custom_objects) # output model summary model.summary() elif TYPE_DNNLIBRARY_USED == 'Pytorch': print( "Loading full model: weights, optimizer, loss, metrics ... and restarting..." ) modelSavedPath = joinpathnames( ModelsPath, 'model_' + args.prediction_modelFile + '.pt') print("Restarting from file: \'%s\'..." % (modelSavedPath)) # load and compile model trainer = Trainer.load_model_full(modelSavedPath) # output model summary trainer.get_summary_model() if (args.saveFeatMapsLayers): if TYPE_DNNLIBRARY_USED == 'Keras': visual_model_params = VisualModelParams(model, IMAGES_DIMS_Z_X_Y) if args.firstSaveFeatMapsLayers: get_index_featmap = lambda i: args.firstSaveFeatMapsLayers + i else: get_index_featmap = lambda i: i elif TYPE_DNNLIBRARY_USED == 'Pytorch': message = 'Visualize a model feature maps still not implemented...' CatchErrorException(message) # ---------------------------------------------- # START ANALYSIS # ---------------------------------------------- print("-" * 30) print("Predicting model...") print("-" * 30) for ifile, test_xData_file in enumerate(listTestImagesFiles): print("\nInput: \'%s\'..." % (basename(test_xData_file))) # COMPUTE PREDICTION # ------------------------------------------ print("Loading data...") if (args.slidingWindowImages or args.transformationImages): if TYPE_DNNLIBRARY_USED == 'Keras': test_xData = LoadDataManagerInBatches_DataGenerator( IMAGES_DIMS_Z_X_Y, test_images_generator).loadData_1File(test_xData_file, shuffle_images=False) elif TYPE_DNNLIBRARY_USED == 'Pytorch': test_xData = LoadDataManager.loadData_1File(test_xData_file) test_batch_data_generator = TrainingBatchDataGenerator( IMAGES_DIMS_Z_X_Y, [test_xData], [test_xData], test_images_generator, batch_size=1, shuffle=False) (test_yData, test_xData) = DataSampleGenerator( IMAGES_DIMS_Z_X_Y, [test_xData], [test_xData], test_images_generator).get_full_data() else: test_xData = LoadDataManagerInBatches( IMAGES_DIMS_Z_X_Y).loadData_1File(test_xData_file) test_xData = np.expand_dims(test_xData, axis=0) print("Total Data batches generated: %s..." % (len(test_xData))) print("Evaluate model...") if TYPE_DNNLIBRARY_USED == 'Keras': predict_yData = model.predict(test_xData, batch_size=1) elif TYPE_DNNLIBRARY_USED == 'Pytorch': predict_yData = trainer.predict(test_batch_data_generator) if (args.saveFeatMapsLayers): print("Compute feature maps of evaluated model...") featuremaps_data = visual_model_params.get_feature_maps( test_xData, args.nameSaveModelLayer, max_num_feat_maps=args.maxNumSaveFeatMapsLayers, first_feat_maps=args.firstSaveFeatMapsLayers) # ------------------------------------------ # RECONSTRUCT FULL-SIZE PREDICTION # ------------------------------------------ print("Reconstruct prediction to full size...") # Assign original images and masks files index_refer_img = getIndexOriginImagesFile(basename(test_xData_file), beginString='images', firstIndex='01') reference_img_file = listReferenceImgsFiles[index_refer_img] print("Reference image file: \'%s\'..." % (basename(reference_img_file))) # init reconstructor with size of "ifile" predict_fullsize_shape = FileReader.getImageSize(test_xData_file) images_reconstructor.complete_init_data(predict_fullsize_shape) prediction_array = images_reconstructor.compute(predict_yData) if (args.saveFeatMapsLayers): featuremaps_array = images_reconstructor.compute(featuremaps_data) # reconstruct from cropped / rescaled images reference_img_shape = FileReader.getImageSize(reference_img_file) if (args.cropImages): crop_bounding_box = dict_cropBoundingBoxes[filenamenoextension( reference_img_file)] print( "Predicted data are cropped. Extend array size to original. Bounding-box: \'%s\'..." % (str(crop_bounding_box))) prediction_array = ExtendImages.compute3D(prediction_array, crop_bounding_box, reference_img_shape) print("Final dims: %s..." % (str(prediction_array.shape))) if (args.masksToRegionInterest): print("Mask predictions to RoI: lungs...") in_roimask_file = listInputRoiMasksFiles[index_refer_img] print("RoI mask (lungs) file: \'%s\'..." % (basename(in_roimask_file))) roimask_array = FileReader.getImageArray(in_roimask_file) prediction_array = OperationBinaryMasks.reverse_mask_exclude_voxels_fillzero( prediction_array, roimask_array) if (args.saveFeatMapsLayers): print("Reconstruct predicted feature maps to full size...") if (args.cropImages): num_featmaps = featuremaps_array.shape[-1] featuremaps_shape = list(reference_img_shape) + [num_featmaps] featuremaps_array = ExtendImages.compute3D( featuremaps_array, crop_bounding_box, featuremaps_shape) if (args.masksToRegionInterest): featuremaps_array = OperationBinaryMasks.reverse_mask_exclude_voxels_fillzero( featuremaps_array, roimask_array) # ------------------------------------------ out_prediction_file = joinpathnames( OutputPredictionPath, nameOutputPredictionFiles % (filenamenoextension(reference_img_file))) print("Output: \'%s\', of dims \'%s\'..." % (basename(out_prediction_file), prediction_array.shape)) FileReader.writeImageArray(out_prediction_file, prediction_array) if (args.saveFeatMapsLayers): nameOutputFeatureMapsRelPath = nameOutputFeatureMapsDirs % ( filenamenoextension(reference_img_file), args.nameSaveModelLayer) OutputFeatureMapsPath = workDirsManager.getNameNewPath( OutputPredictionPath, nameOutputFeatureMapsRelPath) num_featmaps = featuremaps_array.shape[-1] for ifeatmap in range(num_featmaps): out_featuremaps_file = joinpathnames( OutputFeatureMapsPath, nameOutputFeatureMapsFiles % (filenamenoextension(reference_img_file), args.nameSaveModelLayer, get_index_featmap(ifeatmap) + 1)) print("Output: \'%s\', of dims \'%s\'..." % (basename(out_featuremaps_file), featuremaps_array[..., ifeatmap].shape)) FileReader.writeImageArray(out_featuremaps_file, featuremaps_array[..., ifeatmap])
def main(args): # ---------- SETTINGS ---------- nameInputImagesRelPath = 'ProcImages' nameInputMasksRelPath = 'ProcMasks' namePredictMasksFiles = 'predict_binmasks*thres0-5_withtraquea.nii.gz' nameInputImagesFiles = '*.nii.gz' nameInputMasksFiles = '*outerwall*traquea.nii.gz' # template search files tempSearchInputFiles = 'av[0-9]*' # create file to save FROC values temp_outfilename = '%s_video.gif' # ---------- SETTINGS ---------- workDirsManager = WorkDirsManager(args.basedir) BaseDataPath = workDirsManager.getNameBaseDataPath() InputPredictMasksPath = workDirsManager.getNameExistPath( args.basedir, args.predictionsdir) InputImagesPath = workDirsManager.getNameExistPath(args.basedir, nameInputImagesRelPath) InputMasksPath = workDirsManager.getNameExistPath(args.basedir, nameInputMasksRelPath) OutputPath = workDirsManager.getNameNewPath(args.basedir, 'movies_results') listPredictMasksFiles = findFilesDir(InputPredictMasksPath, namePredictMasksFiles) listImagesCTFiles = findFilesDir(InputImagesPath, nameInputImagesFiles) listGrndTruthMasksFiles = findFilesDir(InputMasksPath, nameInputMasksFiles) nbPredictionsFiles = len(listPredictMasksFiles) nbImagesCTFiles = len(listImagesCTFiles) nbGrndTruthMasksFiles = len(listGrndTruthMasksFiles) # Run checkers if (nbPredictionsFiles == 0): message = "0 Predictions found in dir \'%s\'" % (InputPredictMasksPath) CatchErrorException(message) if (nbImagesCTFiles == 0): message = "0 Images CT found in dir \'%s\'" % (InputImagesPath) CatchErrorException(message) if (nbGrndTruthMasksFiles == 0): message = "0 Ground-truth Masks found in dir \'%s\'" % (InputMasksPath) CatchErrorException(message) for i, predict_masks_file in enumerate(listPredictMasksFiles): print('\'%s\'...' % (predict_masks_file)) name_prefix_case = getExtractSubstringPattern( basename(predict_masks_file), tempSearchInputFiles) for iterfile_1, iterfile_2 in zip(listImagesCTFiles, listGrndTruthMasksFiles): if name_prefix_case in iterfile_1: images_CT_file = iterfile_1 grndtruth_masks_file = iterfile_2 #endfor print("assigned to '%s' and '%s'..." % (basename(images_CT_file), basename(grndtruth_masks_file))) predict_masks_array = FileReader.getImageArray(predict_masks_file) images_CT_array = FileReader.getImageArray(images_CT_file) grndtruth_masks_array = FileReader.getImageArray(grndtruth_masks_file) if (args.invertImageAxial): predict_masks_array = FlippingImages.compute(predict_masks_array, axis=0) images_CT_array = FlippingImages.compute(images_CT_array, axis=0) grndtruth_masks_array = FlippingImages.compute( grndtruth_masks_array, axis=0) print("Rendering animations...") list_frames = [] for i in range(images_CT_array.shape[0]): images_CT_slice = images_CT_array[i, :, :] grndtruth_masks_slice = grndtruth_masks_array[i, :, :] predict_masks_slice = predict_masks_array[i, :, :] frame_image_CT = ( images_CT_slice - np.min(images_CT_slice) ) / float(np.max(images_CT_slice) - np.min(images_CT_slice)) frame_new = np.zeros( (images_CT_slice.shape[0], images_CT_slice.shape[1], 3), dtype=np.uint8) frame_new[:, :, :] = 255 * frame_image_CT[:, :, None] if (TYPE_ANIMATION == '1'): index_frame_TP_mask = np.argwhere(grndtruth_masks_slice * predict_masks_slice) index_frame_FN_mask = np.argwhere(grndtruth_masks_slice * (1.0 - predict_masks_slice)) index_frame_FP_mask = np.argwhere( (1.0 - grndtruth_masks_slice) * predict_masks_slice) # paint True Positives, False Negatives and False Positives in yellow, blue and red colour, respectively for index in index_frame_TP_mask: frame_new[tuple(index)] = YELLOW_COLOR for index in index_frame_FN_mask: frame_new[tuple(index)] = BLUE_COLOR for index in index_frame_FP_mask: frame_new[tuple(index)] = RED_COLOR is_valid_frame = len(index_frame_TP_mask) > 0 or len( index_frame_FN_mask) > 0 or len(index_frame_FP_mask) > 0 elif (TYPE_ANIMATION == '2'): index_frame_predict_bound_mask = skimage.segmentation.find_boundaries( predict_masks_slice) index_frame_grndtruth_bound_mask = skimage.segmentation.find_boundaries( grndtruth_masks_slice) # draw boundaries of prediction / ground-truth masks with green / red colour, respectively for index in index_frame_predict_bound_mask: frame_new[tuple(index)] = GREEN_COLOR for index in index_frame_grndtruth_bound_mask: frame_new[tuple(index)] = RED_COLOR is_valid_frame = len( index_frame_predict_bound_mask) > 0 or len( index_frame_grndtruth_bound_mask) > 0 # skip frames that do not contain any predictions and/or ground-truth masks if is_valid_frame: list_frames.append(frame_new) if len(list_frames) > 0: print("Good movie...") outfilename = joinpathnames(OutputPath, temp_outfilename % (name_prefix_case)) imageio.mimsave(outfilename, list_frames, fps=20)
def main(args): # ---------- SETTINGS ---------- nameInputImagesFullRelPath = 'RawImages_Full' nameInputImagesCroppedRelPath = 'RawImages_Cropped' nameImagesFiles = '*.dcm' #test_range_boundbox = ((16, 352), (109, 433), (45, 460)) _eps = 1.0e-06 _alpha_relax = 0.6 _z_min_top = 15 _z_numtest = 10 nameTempOutResFile = 'temp_found_boundBoxes_vol16.csv' nameOutResultFileNPY = 'found_boundBoxes_vol16.npy' nameOutResultFileCSV = 'found_boundBoxes_vol16.csv' # ---------- SETTINGS ---------- workDirsManager = WorkDirsManager(args.basedir) BaseDataPath = workDirsManager.getNameBaseDataPath() InputFullImagesPath = workDirsManager.getNameExistPath(BaseDataPath, nameInputImagesFullRelPath) InputCroppedImagesPath = workDirsManager.getNameExistPath(BaseDataPath, nameInputImagesCroppedRelPath) listInputFullImagesFiles = findFilesDirAndCheck(InputFullImagesPath, nameImagesFiles) listInputCroppedImagesFiles = findFilesDirAndCheck(InputCroppedImagesPath, nameImagesFiles) dict_found_boundingBoxes = {} nameTempOutResFile = joinpathnames(BaseDataPath, nameTempOutResFile) fout = open(nameTempOutResFile, 'w') for in_full_image_file, in_cropped_image_file in zip(listInputFullImagesFiles, listInputCroppedImagesFiles): print("\nInput: \'%s\'..." %(basename(in_full_image_file))) print("And: \'%s\'..." %(basename(in_cropped_image_file))) full_image_array = FileReader.getImageArray(in_full_image_file) cropped_image_array = FileReader.getImageArray(in_cropped_image_file) cropped_image_array = FlippingImages.compute(cropped_image_array, axis=0) full_image_shape = np.array(full_image_array.shape) cropped_image_shape = np.array(cropped_image_array.shape) test_range_boundbox = compute_test_range_boundbox(full_image_shape, cropped_image_shape, alpha_relax=_alpha_relax, z_min_top=_z_min_top, z_numtest=_z_numtest) test_range_boundbox_shape = BoundingBoxes.compute_size_bounding_box(test_range_boundbox) if (test_range_boundbox_shape < cropped_image_array.shape): message = 'size test range of Bounding Boxes than cropped Image: \'%s\' < \'%s\'...' %(test_range_boundbox_shape, cropped_image_array.shape) CatchErrorException(message) else: test_range_boundbox_shape = np.array(test_range_boundbox_shape) (num_test_boundbox, num_tests_total) = compute_num_tests_boundbox(test_range_boundbox_shape, cropped_image_array) print("size full image: \'%s\'..." %(full_image_shape)) print("size cropped image: \'%s\'..." %(cropped_image_shape)) print("test range bounding boxes: \'%s\'..." %(test_range_boundbox)) print("size test range bounding boxes: \'%s\'..." %(test_range_boundbox_shape)) print("num test bounding boxes: \'%s\'..." %(num_test_boundbox)) print("num tests total: \'%s\'..." %(num_tests_total)) flag_found_boundbox = False min_sum_test_res = 1.0e+10 found_boundbox = None counter = 1 for k in range(num_test_boundbox[0]): (z0, zm) = get_limits_test_boundbox(test_range_boundbox[0], cropped_image_shape[0], k, option='start_end') for j in range(num_test_boundbox[1]): (y0, ym) = get_limits_test_boundbox(test_range_boundbox[1], cropped_image_shape[1], j, option='start_begin') for i in range(num_test_boundbox[2]): (x0, xm) = get_limits_test_boundbox(test_range_boundbox[2], cropped_image_shape[2], i, option='start_begin') #print("test \"%s\" of \"%s\"..." %(counter, num_tests_total)) #counter = counter + 1 test_bounding_box = ((z0,zm),(y0,ym),(x0,xm)) #print("test bounding box: %s..." %(test_bounding_box)) test_res_matrix = full_image_array[test_bounding_box[0][0]:test_bounding_box[0][1], test_bounding_box[1][0]:test_bounding_box[1][1], test_bounding_box[2][0]:test_bounding_box[2][1]] - cropped_image_array sum_test_res = np.abs(np.sum(test_res_matrix)) if (sum_test_res <_eps): flag_found_boundbox = True min_sum_test_res = 0.0 found_boundbox = test_bounding_box break elif (sum_test_res < min_sum_test_res): min_sum_test_res = sum_test_res found_boundbox = test_bounding_box if (flag_found_boundbox): break if (flag_found_boundbox): break #endfor #endfor #endfor if (flag_found_boundbox): print("SUCESS: found perfect bounding-box: \'%s\', with null error: \'%s\'..." % (str(found_boundbox), sum_test_res)) rootimagescroppedname = filenamenoextension(in_cropped_image_file) dict_found_boundingBoxes[rootimagescroppedname] = found_boundbox message = "%s,\"%s\"\n" %(rootimagescroppedname, str(found_boundbox)) fout.write(message) else: print("ERROR: not found perfect bounding-box. Closest found is: \'%s\', with error: \'%s\'..." % (str(found_boundbox), min_sum_test_res)) rootimagescroppedname = filenamenoextension(in_cropped_image_file) dict_found_boundingBoxes[rootimagescroppedname] = found_boundbox message = "%s,\"%s\" ...NOT PERFECT...\n" % (rootimagescroppedname, str(found_boundbox)) fout.write(message) #endfor # Save dictionary in csv file nameoutfile = joinpathnames(BaseDataPath, nameOutResultFileNPY) saveDictionary(nameoutfile, dict_found_boundingBoxes) nameoutfile = joinpathnames(BaseDataPath, nameOutResultFileCSV) saveDictionary_csv(nameoutfile, dict_found_boundingBoxes) fout.close()
def main(args): # ---------- SETTINGS ---------- nameInputImagesRelPath = 'ProcImagesExperData' nameInputMasksRelPath = 'ProcMasksExperData' nameVisualImagesRelPath = 'VisualInputData' # Get the file list: nameInImagesFiles = '*.npy' nameInMasksFiles = '*.npy' nameOutImagesFiles_type1 = 'visualImages-%0.2i_dim%s.nii.gz' nameOutMasksFiles_type1 = 'visualMasks-%0.2i_dim%s.nii.gz' nameOutImagesFiles_type2 = 'visualImages-%0.2i_dim%s-batch%0.2i.nii.gz' nameOutMasksFiles_type2 = 'visualMasks-%0.2i_dim%s-batch%0.2i.nii.gz' nameOutImagesFiles_type3 = 'visualImages-%0.2i_dim%s-batch%s.nii.gz' nameOutMasksFiles_type3 = 'visualMasks-%0.2i_dim%s-batch%s.nii.gz' # ---------- SETTINGS ---------- workDirsManager = WorkDirsManager(args.basedir) BaseDataPath = workDirsManager.getNameBaseDataPath() InputImagesPath = workDirsManager.getNameExistPath(BaseDataPath, nameInputImagesRelPath) InputMasksPath = workDirsManager.getNameExistPath(BaseDataPath, nameInputMasksRelPath) VisualImagesPath = workDirsManager.getNameNewPath(args.basedir, nameVisualImagesRelPath) listImagesFiles = findFilesDir(InputImagesPath, nameInImagesFiles) listMasksFiles = findFilesDir(InputMasksPath, nameInMasksFiles) nbImagesFiles = len(listImagesFiles) nbMasksFiles = len(listMasksFiles) # Run checkers if (nbImagesFiles == 0): message = "0 Images found in dir \'%s\'" % (InputImagesPath) CatchErrorException(message) if (nbImagesFiles != nbMasksFiles): message = "num CTs Images %i not equal to num Masks %i" % ( nbImagesFiles, nbMasksFiles) CatchErrorException(message) for i, (images_file, masks_file) in enumerate(zip(listImagesFiles, listMasksFiles)): print('\'%s\'...' % (images_file)) print('\'%s\'...' % (masks_file)) images_array = FileReader.getImageArray(images_file) masks_array = FileReader.getImageArray(masks_file) if (images_array.shape != masks_array.shape): message = "size of Images and Masks not equal: %s != %s" % ( images_array.shape, masks_array.shape) CatchErrorException(message) print("Original image of size: %s..." % (str(images_array.shape))) if (args.createImagesBatches): shape_batches = images_array.shape[1:] print( "Input images data stored as batches of size %s. Visualize batches..." % (str(shape_batches))) images_generator = getImagesVolumeTransformator3D( images_array, args.transformationImages, args.elasticDeformationImages) (visual_images_array, visual_masks_array) = images_generator.get_images_array( images_array, masks_array=masks_array) for j, (batch_images_array, batch_masks_array) in enumerate( zip(visual_images_array, visual_masks_array)): out_images_filename = joinpathnames( VisualImagesPath, nameOutImagesFiles_type2 % (i + 1, tuple2str(visual_images_array.shape[1:]), j + 1)) out_masks_filename = joinpathnames( VisualImagesPath, nameOutMasksFiles_type2 % (i + 1, tuple2str(visual_masks_array.shape[1:]), j + 1)) FileReader.writeImageArray(out_images_filename, batch_images_array) FileReader.writeImageArray(out_masks_filename, batch_masks_array) # endfor else: if (args.visualProcDataInBatches): print( "Input images data stored as volume. Generate batches of size %s. Visualize batches..." % (str(IMAGES_DIMS_Z_X_Y))) images_generator = getImagesDataGenerator3D( args.slidingWindowImages, args.prop_overlap_Z_X_Y, args.transformationImages, args.elasticDeformationImages) batch_data_generator = BatchDataGenerator_2Arrays( IMAGES_DIMS_Z_X_Y, images_array, masks_array, images_generator, size_batch=1, shuffle=False) num_batches_total = len(batch_data_generator) print( "Generate total %s batches by sliding-window, with coordinates:..." % (num_batches_total)) for j in range(num_batches_total): coords_sliding_window_box = images_generator.slidingWindow_generator.get_limits_image( j) (visual_images_array, visual_masks_array) = next(batch_data_generator) visual_images_array = np.squeeze(visual_images_array, axis=0) visual_masks_array = np.squeeze(visual_masks_array, axis=0) out_images_filename = joinpathnames( VisualImagesPath, nameOutImagesFiles_type3 % (i + 1, tuple2str(visual_images_array.shape), tuple2str(coords_sliding_window_box))) out_masks_filename = joinpathnames( VisualImagesPath, nameOutMasksFiles_type3 % (i + 1, tuple2str(visual_masks_array.shape), tuple2str(coords_sliding_window_box))) FileReader.writeImageArray(out_images_filename, visual_images_array) FileReader.writeImageArray(out_masks_filename, visual_masks_array) # endfor else: print( "Input images data stored as volume of size %s. Visualize volume..." % (str(images_array.shape))) images_generator = getImagesVolumeTransformator3D( images_array.shape, args.transformationImages, args.elasticDeformationImages) (visual_images_array, visual_masks_array) = images_generator.get_images_array( images_array, masks_array=masks_array) out_images_filename = joinpathnames( VisualImagesPath, nameOutImagesFiles_type1 % (i + 1, tuple2str(visual_images_array.shape))) out_masks_filename = joinpathnames( VisualImagesPath, nameOutMasksFiles_type1 % (i + 1, tuple2str(visual_masks_array.shape))) FileReader.writeImageArray(out_images_filename, visual_images_array) FileReader.writeImageArray(out_masks_filename, visual_masks_array)
def main(args): # ---------- SETTINGS ---------- nameInputMasksRelPath = 'ProcMasks' nameCentrelinesRelPath = 'ProcAllMasks_3b_i5' # Get the file list: namePredictionsFiles = 'predict_probmaps*.nii.gz' nameInputMasksFiles = '*outerwall.nii.gz' nameCentrelinesFiles = '*centrelines.nii.gz' # template search files tempSearchInputFiles = 'av[0-9]*' # create file to save FROC values temp_outfilename = '%s_ROCsensTPspecFP_NEW.txt' # parameters nbr_of_thresholds = 8 range_threshold = [-10, -3] #thresholds_list = (np.linspace(range_threshold[0], range_threshold[1], nbr_of_thresholds)).tolist() thresholds_list = (np.logspace(range_threshold[0], range_threshold[1], nbr_of_thresholds)).tolist() # thresholds_list += [1.0 - elem for elem in reversed(thresholds_list)] # nbr_of_thresholds *= 2 allowedDistance = 0 # ---------- SETTINGS ---------- workDirsManager = WorkDirsManager(args.basedir) BaseDataPath = workDirsManager.getNameBaseDataPath() InputPredictDataPath = workDirsManager.getNameExistPath( args.basedir, args.predictionsdir) InputMasksPath = workDirsManager.getNameExistPath(BaseDataPath, nameInputMasksRelPath) CentrelinesPath = workDirsManager.getNameExistPath(BaseDataPath, nameCentrelinesRelPath) listPredictionsFiles = findFilesDir(InputPredictDataPath, namePredictionsFiles) listGrndTruthMasksFiles = findFilesDir(InputMasksPath, nameInputMasksFiles) listCentrelinesFiles = findFilesDir(CentrelinesPath, nameCentrelinesFiles) nbPredictionFiles = len(listPredictionsFiles) # Run checkers if (nbPredictionFiles == 0): message = "0 Predictions found in dir \'%s\'" % (InputPredictDataPath) CatchErrorException(message) threshold_listcases = np.zeros((nbr_of_thresholds, nbPredictionFiles)) sensitivity_listcases = np.zeros((nbr_of_thresholds, nbPredictionFiles)) FPaverage_listcases = np.zeros((nbr_of_thresholds, nbPredictionFiles)) completeness_listcases = np.zeros((nbr_of_thresholds, nbPredictionFiles)) volumeleakage_listcases = np.zeros((nbr_of_thresholds, nbPredictionFiles)) dice_coeff_listcases = np.zeros((nbr_of_thresholds, nbPredictionFiles)) print("IMPORTANT: List of Threshold Values: %s" % (thresholds_list)) for i, predict_probmaps_file in enumerate(listPredictionsFiles): print('\'%s\'...' % (predict_probmaps_file)) name_prefix_case = getExtractSubstringPattern( basename(predict_probmaps_file), tempSearchInputFiles) for iter1_file, iter2_file in zip(listGrndTruthMasksFiles, listCentrelinesFiles): if name_prefix_case in iter1_file: grndtruth_masks_file = iter1_file centrelines_file = iter2_file break #endfor print("assigned to \'%s\' and \'%s\'..." % (basename(grndtruth_masks_file), basename(centrelines_file))) predict_probmaps_array = FileReader.getImageArray( predict_probmaps_file) grndtruth_masks_array = FileReader.getImageArray(grndtruth_masks_file) centrelines_array = FileReader.getImageArray(centrelines_file) print("Predictions masks array of size: \'%s\'..." % (str(predict_probmaps_array.shape))) # need to convert to lists for FROC methods predict_probmaps_array = np.expand_dims(predict_probmaps_array, axis=0) grndtruth_masks_array = np.expand_dims(grndtruth_masks_array, axis=0) centrelines_array = np.expand_dims(centrelines_array, axis=0) # compute FROC: sensitivity-specificity print("computing FROC: sensitivity-specificity...") sensitivity_list, FPaverage_list = computeFROC(predict_probmaps_array, grndtruth_masks_array, allowedDistance, thresholds_list) print("...done") # compute ROC: completeness-volume leakage print("computing ROC: completeness-volume leakage...") completeness_list, volumeleakage_list, dice_coeff_list = computeROC_Completeness_VolumeLeakage( predict_probmaps_array, grndtruth_masks_array, centrelines_array, thresholds_list) print("...done") out_filename = joinpathnames(InputPredictDataPath, temp_outfilename % (name_prefix_case)) fout = open(out_filename, 'w') strheader = '/threshold/ /sensitivity/ /FPaverage/ /completeness/ /volume_leakage/ /dice_coeff/' + '\n' fout.write(strheader) for threshold, sensitivity, FPaverage, completeness, volumeleakage, dice_coeff in zip( thresholds_list, sensitivity_list, FPaverage_list, completeness_list, volumeleakage_list, dice_coeff_list): strdata = str(threshold) + ' ' + str(sensitivity) + ' ' + str( FPaverage) + ' ' + str(completeness) + ' ' + str( volumeleakage) + ' ' + str(dice_coeff) + '\n' fout.write(strdata) #endfor fout.close() #store to compute average values over all cases threshold_listcases[:, i] = thresholds_list sensitivity_listcases[:, i] = sensitivity_list FPaverage_listcases[:, i] = FPaverage_list completeness_listcases[:, i] = completeness_list volumeleakage_listcases[:, i] = volumeleakage_list dice_coeff_listcases[:, i] = dice_coeff_list