s = G.close(s) t = C.newPyTree(['Base', a]) # Blanking bodies = [[s]] BM = numpy.array([[1]], numpy.int32) t = X.blankCells(t, bodies, BM, blankingType='center_in') t = X.setHoleInterpolatedPoints(t, depth=-2) # Dist2Walls DTW._distance2Walls(t, [s], type='ortho', loc='centers', signed=1) t = C.center2Node(t, 'centers:TurbulentDistance') # Gradient de distance localise en centres => normales t = P.computeGrad(t, 'TurbulentDistance') I._initConst(t, MInf=0.2, loc='centers') tc = C.node2Center(t) tb = C.newPyTree(['Base', s]) C._addState(tb, 'EquationDimension', 3) C._addState(tb, 'GoverningEquations', 'NSTurbulent') tp = X.setIBCData(t, tc, loc='centers', storage='direct', bcType=0) t2 = X.setInterpTransfers(tp, tc, bcType=0, varType=1) z = IBM.extractIBMWallFields(t2, tb=tb) test.testT(z, 1) # tp = X.setIBCData(t, tc, loc='centers', storage='direct', bcType=3) t2 = X.setInterpTransfers(tp, tc, bcType=3, varType=1) z = IBM.extractIBMWallFields(t2, tb=tb) test.testT(z, 2)
import Initiator.PyTree as I import Converter.Internal as Internal import Connector.ToolboxIBM as IBM import KCore.test as test import numpy N = 41 a = G.cart((0, 0, 0), (1. / (N - 1), 1. / (N - 1), 1. / (N - 1)), (N, N, N)) xm = 0.5 * N / (N - 1) s = D.sphere((xm, xm, xm), 0.1, N=20) s = C.convertArray2Tetra(s) s = G.close(s) t = C.newPyTree(['Base']) t[2][1][2] = [a] # Blanking bodies = [[s]] BM = numpy.array([[1]], numpy.int32) t = X.blankCells(t, bodies, BM, blankingType='center_in') t = X.setHoleInterpolatedPoints(t, depth=-2) # Dist2Walls t = DTW.distance2Walls(t, [s], type='ortho', loc='centers', signed=1) t = C.center2Node(t, 'centers:TurbulentDistance') # Gradient de distance localise en centres => normales t = P.computeGrad(t, 'TurbulentDistance') t = I.initConst(t, MInf=0.2, loc='centers') tc = C.node2Center(t) t2 = X.setIBCData(t, tc, loc='centers', storage='direct') t2 = X.setInterpTransfers(t2, tc, bcType=0, varType=1) z = IBM.extractIBMWallFields(t2) C.convertPyTree2File(z, "out.cgns")