def __init__(self, root=None): """connect to mdsplus server and init data importer""" if root: self.exporter = Exporter(root) self.reader = Reader(root) else: self.exporter = Exporter() self.reader = Reader() # log log_dir = os.path.abspath('') + os.sep + 'log' if not os.path.exists(log_dir): os.makedirs(log_dir) self.logger = logging.getLogger(__name__) self.logger.setLevel(level=logging.INFO) handler = logging.FileHandler( log_dir + os.sep + 'JTEXTDataExporter_log_{}.txt'.format( time.strftime("%Y_%m_%d %H:%M:%S", time.localtime( time.time())))) handler.setLevel(logging.INFO) formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) console = logging.StreamHandler() console.setLevel(logging.INFO) self.logger.addHandler(handler) self.logger.addHandler(console)
def TCShotlist(self, Taglist=None, Shotlist=None, Detail=False): Shotlist = list(Shotlist) input = Shotlist.copy() reader = Reader(root_path=self.hdf5path) n = 1 IncompleteNumber = [] for i in Shotlist: print("第{}个".format(n)) n += 1 ShotTag = reader.tags(int(i)) for j in Taglist: if j in ShotTag: continue else: IncompleteNumber.append(i) break for i in IncompleteNumber: for j in Shotlist: if int(i) == int(j): Shotlist.remove(j) outlist = Shotlist if Detail: print("Number of input shots : {}".format(len(input))) print("Number of excluded shots : {}".format(len(IncompleteNumber))) print("Number of output shots : {}".format(len(outlist))) return outlist
def run(self): reader = Reader(self.hdf5_path) for plugin in self.plugins.values(): signals = plugin.requested_signal() for shot in self.shots: self.logger.info('Run module {} @shot {}.\n'.format( plugin.__class__.__name__, shot)) try: data = reader.read_many(shot=shot, tags=signals) result = plugin.generate(data) except Exception as e: self.logger.info('An error occurs in module {} @shot {}.\n{}\n{}'.format( plugin.__class__.__name__, shot, e, traceback.format_exc())) result = {} if self.output['type'] == "mongodb": from pymongo import MongoClient client = MongoClient(self.output['host'], int(self.output['port'])) db = client[self.output['database']] if self.config.has_option('output', 'username'): db.authenticate(self.config.get('output', 'username'), self.config.get('output', 'password')) col = db[self.output['collection']] result['shot'] = shot col.update_one( {"shot": shot}, {"$set": result}, upsert=True ) elif self.output['type'] == "stdio": print(result) else: raise RuntimeError('配置文件output type选项不正确,可选为:mongodb,stdio')
def run(self): data_reader = Reader() ddb = Query() for shot in self._shots: # if shot < 1065500 or shot > 1065599: # continue print(shot) try: tags = ddb.tag(shot) if tags['IsDisrupt']: t1 = tags['CqTime'] else: t1 = tags['RampDownTime'] new_dig_length = int((t1 * 1000 - 50) * self._sample_rate) data = data_reader.read_many(shot, self._tags) digs = [] for tag, (dig, time) in data.items(): dig = dig[(0.05 <= time) & (time <= t1)] if self._normalized: dig = (dig - self._normalize_param[tag]['min']) / \ (self._normalize_param[tag]['max'] - self._normalize_param[tag]['min']) digs.append(signal.resample(dig, new_dig_length)) digs = np.array(digs) y_ = y(new_dig_length, self._sample_rate, tags['IsDisrupt']) index = 0 path = os.path.join(self._npy_path, '{}'.format(shot)) if not os.path.exists(path): os.makedirs(path) while index + self._frame_size <= new_dig_length: frame = digs[:, index:index + self._frame_size] y_frame = y_[index:index + self._frame_size] np.save( os.path.join( path, 'x_{}.npy'.format(int(index / self._step))), frame) np.save( os.path.join( path, 'y_{}.npy'.format(int(index / self._step))), y_frame) index += self._step if index + self._frame_size - new_dig_length < self._frame_size / 2: frame = digs[:, new_dig_length - self._frame_size:new_dig_length] y_frame = y_[new_dig_length - self._frame_size:new_dig_length] np.save( os.path.join( path, 'x_{}.npy'.format(int(index / self._step))), frame) np.save( os.path.join( path, 'y_{}.npy'.format(int(index / self._step))), y_frame) except Exception as e: print(e) traceback.print_exc()
def save_full_npy(self, shots): data_reader = Reader() ddb = Query() path = os.path.join(self._npy_path, 'full') if not os.path.exists(path): os.makedirs(path) print('####Start generate val DataSet####') for shot in shots: try: print(shot) tags = ddb.tag(shot) if tags['IsDisrupt']: t1 = tags['CqTime'] else: t1 = tags['RampDownTime'] new_dig_length = int((t1 * 1000 - 50) * self._sample_rate) data = data_reader.read_many(shot, self._tags) digs = [] for tag, (dig, time) in data.items(): dig = dig[(0.05 <= time) & (time <= t1)] if self._normalized: dig = (dig - self._normalize_param[tag]['min']) / \ (self._normalize_param[tag]['max'] - self._normalize_param[tag]['min']) digs.append(signal.resample(dig, new_dig_length)) digs = np.array(digs) y_ = y(new_dig_length, self._sample_rate, tags['IsDisrupt']) index = 0 x = list() labels = list() while index + self._frame_size <= new_dig_length: frame = digs[:, index:index + self._frame_size] y_frame = y_[index:index + self._frame_size] # index += self.frame_size x.append(frame) labels.append(y_frame[-1]) index += self._step x = np.array(x) labels = np.array(labels) np.save(os.path.join(path, 'x_{}.npy'.format(shot)), x) np.save(os.path.join(path, 'y_{}.npy'.format(shot)), labels) except Exception as e: print(e) traceback.print_exc()
def plot_one(self, Tag=None, Shot=None, Savepath=None, xline=None, yline=None, Showplot=False): if Savepath: root_path = Savepath if not os.path.exists(root_path): raise ValueError( 'No such saving path, you need to create one! ') else: root_path = os.getcwd() + os.sep + "plot" print(root_path) if not os.path.exists(root_path): os.makedirs(root_path) reader = Reader(root_path=self.hdf5path) try: data = reader.read_one(int(Shot), Tag) tag_name = Tag[1:] plt.figure((str(Shot) + tag_name)) plt.plot(data[1], data[0], 'g') if xline: if not isNum(xline): raise ValueError('xline needs to be number ') plt.axvline(round(xline, 3)) if yline: if not isNum(yline): raise ValueError('yline needs to be number ') plt.axhline(round(yline, 3)) name = str(Shot) + r" " + tag_name path = root_path + os.sep + r"{}.png".format(name) plt.savefig(path) if Showplot: plt.show() plt.close() except Exception as err: print("Shot:{}".format(shot) + " Tag:{} ".format(tag_name) + "No data") plt.close() pass
def generate(self): data_reader = Reader() ddb = Query() for categories, shots in self._shots.items(): if not os.path.exists(os.path.join(self._directory, categories)): os.makedirs(os.path.join(self._directory, categories)) for shot in shots: print(shot) try: tags = ddb.tag(shot) if tags['IsDisrupt']: t1 = tags['CqTime'] else: t1 = tags['RampDownTime'] new_dig_length = int( (t1 * 1000 - self._start_time) * self._sample_rate) data = data_reader.read_many(shot, self._tags) digs = [] for tag, (dig, time) in data.items(): dig = dig[(self._start_time / 1000 <= time) & (time <= t1)] # 归一化 if self._normalized: dig = (dig - self._normalize_param[tag]['min']) / \ (self._normalize_param[tag]['max'] - self._normalize_param[tag]['min']) # 重采样 digs.append(signal.resample(dig, new_dig_length)) digs = np.array(digs) f = h5py.File( os.path.join(self._directory, categories, '{}.hdf5'.format(shot))) dataset = f.create_dataset('diagnosis', data=digs) for key, value in tags.items(): dataset.attrs.create(key, value) f.close() except Exception as e: print(e) traceback.print_exc()
def TagNum(self, Taglist=None, Shotlist=None): Taglist = list(Taglist) Shotlist = list(Shotlist) for i in range(len(Taglist)): Taglist[i] = Taglist[i][1:len(Taglist[i])] result = {} for i in Taglist: result.update({i: 0}) reader = Reader(root_path=self.hdf5path) n = 1 for i in Shotlist: print("第{}个".format(n)) n += 1 ShotTag = reader.tags(int(i)) for k in range(len(ShotTag)): ShotTag[k] = ShotTag[k][1:len(ShotTag[k])] for j in Taglist: for tag in ShotTag: if j == tag : result[j] = result[j]+1 pprint.pprint(result)
def Vpfiltshot(self, Shotlist=None, Threshold=None, Detail=False): Shotlist = list(Shotlist) input = Shotlist if not Threshold: Threshold = 0.015 reader = Reader(root_path=self.hdf5path) breakvp = [] n = 1 for shot in Shotlist: print("第{}个".format(n)) n += 1 data = reader.read_one(int(shot), r"\vp2") # 低通滤波 ba = signal.butter(8, 0.01, "lowpass") fdata = signal.filtfilt(ba[0], ba[1], data[0]) if max(fdata) < Threshold: breakvp.append(shot) output = breakvp if Detail: print("Number of input shots : {}".format(len(input))) print("Number of output shots : {}".format(len(output))) return output
def plot_much(self, Taglist=None, Shotlist=None, Savepath=None, ShowDownTime=False, ShowIpFlat=False, xline=None, yline=None): if Savepath: root_path = Savepath if not os.path.exists(root_path): raise ValueError( 'No such saving path, you need to create one! ') else: root_path = os.getcwd() + os.sep + "plot" print(root_path) if not os.path.exists(root_path): os.makedirs(root_path) for tag in Taglist: tag_name = tag[1:] file_path = root_path + os.sep + tag_name if not os.path.exists(file_path): os.makedirs(file_path) reader = Reader(root_path=self.hdf5path) db = Query() for tag in Taglist: tag_name = tag[1:] file_path = root_path + os.sep + tag_name n = 1 for shot in Shotlist: print("Shot:{}".format(shot) + " Tag:{} ".format(tag_name) + "No.{}".format(n)) n += 1 try: shot_info = db.tag(int(shot)) data = reader.read_one(int(shot), tag) plt.figure((str(shot) + tag_name)) plt.plot(data[1], data[0], 'g') if ShowDownTime: if shot_info["IsValidShot"]: if shot_info["IsDisrupt"]: plt.axvline(round(shot_info["CqTime"], 3), c='r') else: plt.axvline(round(shot_info["RampDownTime"], 3), c='r') if ShowIpFlat: if tag == r"\ip": if shot_info["IsValidShot"]: plt.axhline(round(shot_info["IpFlat"], 3), c='k') if xline: if not isNum(xline): raise ValueError('xline needs to be number ') plt.axvline(round(xline, 3)) if yline: if not isNum(yline): raise ValueError('yline needs to be number ') plt.axhline(round(yline, 3)) path = file_path + os.sep + r"{}.png".format(shot) plt.savefig(path) plt.close() except Exception as err: print("Shot:{}".format(shot) + " Tag:{} ".format(tag_name) + "No data") plt.close() pass
r"TrainNormal.npy") TrainBreak = np.load(root_path + os.sep + r"TrainData" + os.sep + r"TrainBreak.npy") TrainNormal = list(TrainNormal) TrainBreak = list(TrainBreak) print(len(TrainNormal)) print(len(TrainBreak)) TrainShot = TrainNormal + TrainBreak save_path = root_path + os.sep + r"ReduceSampling" if not os.path.exists(save_path): os.makedirs(save_path) n = 1 mistake = [] reader = Reader() db = Query() for shot in TrainShot: print("Shot:{} ".format(shot) + "No.{}".format(n)) n += 1 try: shot_info = db.tag(int(shot)) file = h5py.File(save_path + os.sep + r"{}.hdf5".format(shot)) if not shot_info["IsDisrupt"]: DownTime = shot_info["RampDownTime"] for shottag in all_tags: dataset = reader.read_one(int(shot), shottag) data = dataset[0] time = dataset[1] data = data[time <= DownTime] time = time[time <= DownTime]