def read_hessjob(args=None): from DIRAC.Interfaces.API.Dirac import Dirac from DIRAC.Interfaces.API.Job import Job if (len(args) != 1): Script.showHelp() version = args[0] user_script = './read_hess2dst.sh' sim_file = 'simtel_file.list' infileLFNList = [ '/vo.cta.in2p3.fr/MC/PROD2/Config_310113/prod-2_21122012_corsika/gamma/prod-2_06052013_simtel_STD/Data/002xxx/gamma_20.0_180.0_alt2662.0_run002997.simtel.gz', '/vo.cta.in2p3.fr/MC/PROD2/Config_310113/prod-2_21122012_corsika/gamma/prod-2_06052013_simtel_STD/Data/002xxx/gamma_20.0_180.0_alt2662.0_run002998.simtel.gz' ] f = open(sim_file, 'w') for infileLFN in infileLFNList: filein = os.path.basename(infileLFN) f.write(filein) f.write('\n') f.close() j = Job() j.setInputData(infileLFNList) options = [] options = [sim_file] executablestr = "%s %s %s" % (version, user_script, ' '.join(options)) j.setExecutable('./cta-read_hess.py', executablestr) j.setInputSandbox(['cta-read_hess.py', user_script, sim_file]) j.setOutputSandbox(['read_hess.log']) j.setOutputData(['*dst.gz']) j.setName(user_script) j.setCPUTime(100000) Script.gLogger.info(j._toJDL()) Dirac().submit(j)
def submitJob(jobPara): dirac = Dirac() j = Job() j.setName(jobPara['jobName']) j.setJobGroup(jobPara['jobGroup']) j.setExecutable(jobPara['jobScript'], logFile = jobPara['jobScriptLog']) j.setInputSandbox(jobPara['inputSandbox']) j.setOutputSandbox(jobPara['outputSandbox']) j.setOutputData(jobPara['outputData'], jobPara['SE']) j.setDestination(jobPara['sites']) j.setCPUTime(jobPara['CPUTime']) result = dirac.submit(j) if result['OK']: print 'Job %s submitted successfully. ID = %d' %(jobPara['jobName'],result['Value']) else: print 'Job %s submitted failed' %jobPara['jobName'] return result
def submitJob(jobPara): dirac = Dirac() j = Job() j.setName(jobPara['jobName']) j.setJobGroup(jobPara['jobGroup']) j.setExecutable(jobPara['jobScript'], logFile=jobPara['jobScriptLog']) j.setInputSandbox(jobPara['inputSandbox']) j.setOutputSandbox(jobPara['outputSandbox']) j.setOutputData(jobPara['outputData'], jobPara['SE']) j.setDestination(jobPara['sites']) j.setCPUTime(jobPara['CPUTime']) result = dirac.submit(j) if result['OK']: print 'Job %s submitted successfully. ID = %d' % (jobPara['jobName'], result['Value']) else: print 'Job %s submitted failed' % jobPara['jobName'] return result
def test_submit(self): print "**********************************************************************************************************" gLogger.info("\n Submitting hello world job") helloJ = Job() helloJ.setName("helloWorld-test-T2s") helloJ.setInputSandbox( [find_all('exe-script.py', '.', 'GridTestSubmission')[0]]) helloJ.setExecutable("exe-script.py", "", "helloWorld.log") helloJ.setCPUTime(17800) result = self.dirac.submit(helloJ) gLogger.info("Hello world job: ", result) jobID = int(result['Value']) jobsSubmittedList.append(jobID) self.assert_(result['OK']) print "**********************************************************************************************************" gLogger.info("\n Submitting a job that uploads an output") helloJ = Job() helloJ.setName("upload-Output-test") helloJ.setInputSandbox( [find_all('testFileUpload.txt', '.', 'GridTestSubmission')[0]]) helloJ.setExecutable("exe-script.py", "", "helloWorld.log") helloJ.setCPUTime(17800) helloJ.setOutputData(['testFileUpload.txt']) result = self.dirac.submit(helloJ) gLogger.info("Hello world with output: ", result) jobID = int(result['Value']) jobsSubmittedList.append(jobID) self.assert_(result['OK'])
def simteljob(args = None ): from DIRAC.Interfaces.API.Dirac import Dirac from DIRAC.Interfaces.API.Job import Job if (len(args)!=1): Script.showHelp() version = args[0] user_script = './run_simtel.sh' infileLFNList = ['/vo.cta.in2p3.fr/MC/PROD2/Config_120213/prod-2_21122012_corsika/proton/Data/044xxx/proton_20.0_180.0_alt2662.0_run044019.corsika.gz', '/vo.cta.in2p3.fr/MC/PROD2/Config_120213/prod-2_21122012_corsika/proton/Data/044xxx/proton_20.0_180.0_alt2662.0_run044085.corsika.gz'] for infileLFN in infileLFNList: filein = os.path.basename(infileLFN) j = Job() j.setInputSandbox( ['cta-simtel.py', user_script] ) j.setInputData(infileLFN) user_args = [] user_args = [filein] executablestr = "%s %s %s" % ( version, user_script, ' '.join( user_args ) ) j.setExecutable('./cta-simtel.py', executablestr) sim_out = 'Data/sim_telarray/cta-ultra5/0.0deg/Data/*.simtel.gz' log_out = 'Data/sim_telarray/cta-ultra5/0.0deg/Log/*.log.gz' hist_out = 'Data/sim_telarray/cta-ultra5/0.0deg/Histograms/*.hdata.gz' j.setOutputData([sim_out,log_out,hist_out]) j.setOutputSandbox('simtel.log') j.setName(user_script) j.setCPUTime(100000) Script.gLogger.info( j._toJDL() ) Dirac().submit( j )
def basicTest(self): j = Job() j.setCPUTime(50000) j.setExecutable( '/Users/stuart/dirac/workspace/DIRAC3/DIRAC/Interfaces/API/test/myPythonScript.py' ) # j.setExecutable('/bin/echo hello') j.setOwner('paterson') j.setType('test') j.setName('MyJobName') #j.setAncestorDepth(1) j.setInputSandbox([ '/Users/stuart/dirac/workspace/DIRAC3/DIRAC/Interfaces/API/test/DV.opts', '/Users/stuart/dirac/workspace/DIRAC3/DIRAC/Interfaces/API/test/DV2.opts' ]) j.setOutputSandbox(['firstfile.txt', 'anotherfile.root']) j.setInputData([ '/lhcb/production/DC04/v2/DST/00000742_00003493_11.dst', '/lhcb/production/DC04/v2/DST/00000742_00003493_10.dst' ]) j.setOutputData(['my.dst', 'myfile.log']) j.setDestination('LCG.CERN.ch') j.setPlatform('LCG') j.setSystemConfig('x86_64-slc5-gcc43-opt') j.setSoftwareTags(['VO-lhcb-Brunel-v30r17', 'VO-lhcb-Boole-v12r10']) #print j._toJDL() #print j.printObj() xml = j._toXML() testFile = 'jobDescription.xml' if os.path.exists(testFile): os.remove(testFile) xmlfile = open(testFile, 'w') xmlfile.write(xml) xmlfile.close() print '>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>Creating code for the workflow' print j.createCode() print '>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>Executing the workflow' j.execute() print '>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>Trying to run the same workflow from generated XML file' workflow = fromXMLFile(testFile) code = workflow.createCode() print code workflow.execute()
def submitWMS(args): first_line = args[0] job = Job() dirac = Dirac() job.setName('mandelbrot') job.setExecutable('git clone https://github.com/bregeon/mandel4ts.git') job.setExecutable('./mandel4ts/mandelbrot.py', arguments="-P 0.0005 -M 1000 -L %s -N 200" % first_line) job.setOutputData(['data_*.bmp', 'data*.txt']) res = dirac.submitJob(job) return res
def submit(self, param): j = Job() j.setName(param['jobName']) j.setExecutable(param['jobScript'],logFile = param['jobScriptLog']) if self.site: j.setDestination(self.site) if self.jobGroup: j.setJobGroup(self.jobGroup) j.setInputSandbox(param['inputSandbox']) j.setOutputSandbox(param['outputSandbox']) j.setOutputData(param['outputData'], outputSE = self.outputSE, outputPath = self.outputPath) dirac = GridDirac() result = dirac.submit(j) status = {} status['submit'] = result['OK'] if status['submit']: status['job_id'] = result['Value'] return status
def submit_job(self, request_id, executable, macro, starting_seed=8000000, njobs=10, platform='ANY', output_data_site='UKI-LT2-IC-HEP-disk', output_log='lzproduction_output.log'): """ Submit LZProduction job to DIRAC. Args: request_id (int): The id number of the associated request executable (str): The full path to the executable job script macro (str): The full path to the macro for this job starting_seed (int): The random seed for the first of the parametric jobs njobs (int): The number of parametric jobs to create platform (str): The required platform output_data_site (str): The name of the grid site to store the output data at output_log (str): The file name for the output log file Returns: list: The list of created parametric job DIRAC ids """ j = Job() j.setName(os.path.splitext(os.path.basename(macro))[0] + '%(args)s') j.setExecutable(os.path.basename(executable), os.path.basename(macro) + ' %(args)s', output_log) j.setInputSandbox([executable, macro]) j.setOutputData('*.root', output_data_site, str(request_id)) j.setParameterSequence( "args", [str(i) for i in xrange(starting_seed, starting_seed + njobs)], addToWorkflow=True) j.setPlatform(platform) return self.status(self._dirac_api.submit(j).get("Value", []))
def submit(self, param): j = Job() j.setName(param['jobName']) j.setExecutable(param['jobScript'], logFile=param['jobScriptLog']) if self.site: j.setDestination(self.site) if self.jobGroup: j.setJobGroup(self.jobGroup) j.setInputSandbox(param['inputSandbox']) j.setOutputSandbox(param['outputSandbox']) j.setOutputData(param['outputData'], outputSE=self.outputSE, outputPath=self.outputPath) dirac = GridDirac() result = dirac.submit(j) status = {} status['submit'] = result['OK'] if status['submit']: status['job_id'] = result['Value'] return status
def basicTest(self): j = Job() j.setCPUTime(50000) j.setExecutable('/Users/stuart/dirac/workspace/DIRAC3/DIRAC/Interfaces/API/test/myPythonScript.py') # j.setExecutable('/bin/echo hello') j.setOwner('paterson') j.setType('test') j.setName('MyJobName') #j.setAncestorDepth(1) j.setInputSandbox(['/Users/stuart/dirac/workspace/DIRAC3/DIRAC/Interfaces/API/test/DV.opts','/Users/stuart/dirac/workspace/DIRAC3/DIRAC/Interfaces/API/test/DV2.opts']) j.setOutputSandbox(['firstfile.txt','anotherfile.root']) j.setInputData(['/lhcb/production/DC04/v2/DST/00000742_00003493_11.dst', '/lhcb/production/DC04/v2/DST/00000742_00003493_10.dst']) j.setOutputData(['my.dst','myfile.log']) j.setDestination('LCG.CERN.ch') j.setPlatform('LCG') j.setSystemConfig('x86_64-slc5-gcc43-opt') j.setSoftwareTags(['VO-lhcb-Brunel-v30r17','VO-lhcb-Boole-v12r10']) #print j._toJDL() #print j.printObj() xml = j._toXML() testFile = 'jobDescription.xml' if os.path.exists(testFile): os.remove(testFile) xmlfile = open(testFile,'w') xmlfile.write(xml) xmlfile.close() print '>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>Creating code for the workflow' print j.createCode() print '>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>Executing the workflow' j.execute() print '>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>Trying to run the same workflow from generated XML file' workflow = fromXMLFile(testFile) code = workflow.createCode() print code workflow.execute()
# simple `ls` for good measure j.setExecutable('ls', '-lh') # if there is more than one file per job, merge the output tables if window_sizes[i] > 1: for in_name, out_name in [('classified_events_wave', output_filename_wave), ('classified_events_tail', output_filename_tail)]: j.setExecutable('./pilot.sh', pilot_args_append.format( in_name=in_name, out_name=out_name)) print print("OutputData: {}{}".format(output_path, output_filename_wave)) print("OutputData: {}{}".format(output_path, output_filename_tail)) j.setOutputData([output_filename_wave, output_filename_tail], outputSE=None, outputPath=output_path) # check if we should somehow stop doing what we are doing if "dry" in sys.argv: print("\nrunning dry -- not submitting") exit() # this sends the job to the GRID and uploads all the # files into the input sandbox in the process print("\nsubmitting job") print('Submission Result: {}\n'.format(dirac.submit(j)['Value'])) # break if this is only a test submission if "test" in sys.argv: print("test run -- only submitting one job") exit()
def main(dataset, chunksize, test): ''' The DATASET argument is a list of paths to MC files on the grid. Like the output of cta-prod3-dump-dataset for example. See also https://forge.in2p3.fr/projects/cta_dirac/wiki/CTA-DIRAC_MC_PROD3_Status Keep in mind that for some effing reason this needs to be executed within this weird 'dirac' environment which comes with its own glibc, python and pip. I guess the real Mr. Dirac would turn in his grave. ''' dirac = Dirac() with open(dataset) as f: simtel_files = f.readlines() print('Analysing {}'.format(len(simtel_files))) server_list = [ "TORINO-USER", "CYF-STORM-USER", "CYF-STORM-Disk", "M3PEC-Disk", "OBSPM-Disk", "POLGRID-Disk", "FRASCATI-USER", "LAL-Disk", "CIEMAT-Disk", "CIEMAT-USER", "CPPM-Disk", "LAL-USER", "CYFRONET-Disk", "DESY-ZN-USER", "M3PEC-USER", "LPNHE-Disk", "LPNHE-USER", "LAPP-USER", "LAPP-Disk" ] desy_server = 'DESY-ZN-USER' servers_with_miniconda = [ 'LCG.IN2P3-CC.fr', 'LCG.DESY-ZEUTHEN.de', 'LCG.CNAF.it', 'LCG.GRIF.fr', 'LCG.CYFRONET.pl', 'LCG.Prague.cz', 'LCG.CIEMAT.es' ] chunks = np.array_split(sorted(simtel_files), int(len(simtel_files) / chunksize)) print('Got a total of {} chunks'.format(len(chunks))) for c, simtel_filenames in tqdm(enumerate( chunks[0:2])): # send just 2 jobs for now. # convert chunk to a list of strings. becasue this dirac thing cant take numpy arrays simtel_filenames = [ str(s).strip() for s in simtel_filenames if 'SCT' not in s ] print('Starting processing for chunk {}'.format(c)) print(simtel_filenames) j = Job() # set runtime to 0.5h j.setCPUTime(30 * 60) j.setName('cta_preprocessing_{}'.format(c)) j.setInputData(simtel_filenames) j.setOutputData(['./processing_output/*.hdf5'], outputSE=None, outputPath='cta_preprocessing/') j.setInputSandbox( ['../process_simtel.py', './install_dependencies.py']) j.setOutputSandbox(['cta_preprocessing.log']) j.setExecutable('./job_script.sh') # These servers seem to have mini conda installed # destination = np.random.choice(servers_with_miniconda) j.setDestination(servers_with_miniconda) value = dirac.submit(j) print('Number {} Submission Result: {}'.format(c, value))
j.setOutputSandbox([ 'StdOut', 'StdErr', 'outputtxt_' + str(id_start) + '_' + str(id_end - 1) + '.txt', 'prmon' + str(id_start) + '_' + str(id_end - 1) + '.txt' ]) o_data_file = lfn + 'second/results_experiment_' + str( expmnt) + '/' + 'LOS_' + str(id_start) + '_to_' + str(id_end - 1) + '.npy' try: output_process = subprocess.check_output('dirac-dms-remove-files ' + o_data_file, stderr=subprocess.STDOUT, shell=True) except subprocess.CalledProcessError as e: print 'Failed: ' + str(e.returncode) + ' ' + e.output else: print "Output: ", output_process j.setOutputData( ['LOS_' + str(id_start) + '_to_' + str(id_end - 1) + '.npy'], outputSE=SEList, outputPath='/second/results_experiment_' + str(expmnt)) try: diracUsername = getProxyInfo()['Value']['username'] except: print 'Failed to get DIRAC username. No proxy set up?' sys.exit(1) j.setJobGroup('rmsynthesis_by_' + expmnt + '_' + timestamp) jobID = dirac.submitJob(j) print 'Submission Result: ', j._toJDL() print '\n'
def main(): """ Launch job on the GRID """ # this thing pilots everything related to the GRID dirac = Dirac() if switches["output_type"] in "TRAINING": print("Preparing submission for TRAINING data") elif switches["output_type"] in "DL2": print("Preparing submission for DL2 data") else: print("You have to choose either TRAINING or DL2 as output type!") sys.exit() # Read configuration file cfg = load_config(switches["config_file"]) # Analysis config_path = cfg["General"]["config_path"] config_file = cfg["General"]["config_file"] mode = cfg["General"]["mode"] # One mode naw particle = cfg["General"]["particle"] estimate_energy = cfg["General"]["estimate_energy"] force_tailcut_for_extended_cleaning = cfg["General"][ "force_tailcut_for_extended_cleaning"] # Take parameters from the analysis configuration file ana_cfg = load_config(os.path.join(config_path, config_file)) config_name = ana_cfg["General"]["config_name"] cam_id_list = ana_cfg["General"]["cam_id_list"] # Regressor and classifier methods regressor_method = ana_cfg["EnergyRegressor"]["method_name"] classifier_method = ana_cfg["GammaHadronClassifier"]["method_name"] # Someone might want to create DL2 without score or energy estimation if regressor_method in ["None", "none", None]: use_regressor = False else: use_regressor = True if classifier_method in ["None", "none", None]: use_classifier = False else: use_classifier = True # GRID outdir = os.path.join(cfg["GRID"]["outdir"], config_name) n_file_per_job = cfg["GRID"]["n_file_per_job"] n_jobs_max = cfg["GRID"]["n_jobs_max"] model_dir = cfg["GRID"]["model_dir"] training_dir_energy = cfg["GRID"]["training_dir_energy"] training_dir_classification = cfg["GRID"]["training_dir_classification"] dl2_dir = cfg["GRID"]["dl2_dir"] home_grid = cfg["GRID"]["home_grid"] user_name = cfg["GRID"]["user_name"] banned_sites = cfg["GRID"]["banned_sites"] # HACK if force_tailcut_for_extended_cleaning is True: print("Force tail cuts for extended cleaning!!!") # Prepare command to launch script source_ctapipe = "source /cvmfs/cta.in2p3.fr/software/conda/dev/setupConda.sh" source_ctapipe += " && conda activate ctapipe_v0.11.0" if switches["output_type"] in "TRAINING": execute = "data_training.py" script_args = [ "--config_file={}".format(config_file), "--estimate_energy={}".format(str(estimate_energy)), "--regressor_config={}.yaml".format(regressor_method), "--regressor_dir=./", "--outfile {outfile}", "--indir ./ --infile_list={infile_name}", "--max_events={}".format(switches["max_events"]), "--{mode}", "--cam_ids {}".format(cam_id_list), ] output_filename_template = "TRAINING" elif switches["output_type"] in "DL2": execute = "write_dl2.py" script_args = [ "--config_file={}".format(config_file), "--regressor_config={}.yaml".format(regressor_method), "--regressor_dir=./", "--classifier_config={}.yaml".format(classifier_method), "--classifier_dir=./", "--outfile {outfile}", "--indir ./ --infile_list={infile_name}", "--max_events={}".format(switches["max_events"]), "--{mode}", "--force_tailcut_for_extended_cleaning={}".format( force_tailcut_for_extended_cleaning), "--cam_ids {}".format(cam_id_list), ] output_filename_template = "DL2" # Make the script save also the full calibrated images if required if switches["save_images"] is True: script_args.append("--save_images") # Make the script print debug information if required if switches["debug_script"] is True: script_args.append("--debug") cmd = [source_ctapipe, "&&", "./" + execute] cmd += script_args pilot_args_write = " ".join(cmd) # For table merging if multiple runs pilot_args_merge = " ".join([ source_ctapipe, "&&", "./merge_tables.py", "--template_file_name", "{in_name}", "--outfile", "{out_name}", ]) prod3b_filelist = dict() if estimate_energy is False and switches["output_type"] in "TRAINING": prod3b_filelist["gamma"] = cfg["EnergyRegressor"]["gamma_list"] elif estimate_energy is True and switches["output_type"] in "TRAINING": prod3b_filelist["gamma"] = cfg["GammaHadronClassifier"]["gamma_list"] prod3b_filelist["proton"] = cfg["GammaHadronClassifier"]["proton_list"] elif switches["output_type"] in "DL2": prod3b_filelist["gamma"] = cfg["Performance"]["gamma_list"] prod3b_filelist["proton"] = cfg["Performance"]["proton_list"] prod3b_filelist["electron"] = cfg["Performance"]["electron_list"] # from IPython import embed # embed() # Split list of files according to stoprage elements with open(prod3b_filelist[particle]) as f: filelist = f.readlines() filelist = ["{}".format(_.replace("\n", "")) for _ in filelist] res = dirac.splitInputData(filelist, n_file_per_job) list_run_to_loop_on = res["Value"] # define a template name for the file that's going to be written out. # the placeholder braces are going to get set during the file-loop output_filename = output_filename_template output_path = outdir if estimate_energy is False and switches["output_type"] in "TRAINING": output_path += "/{}/".format(training_dir_energy) step = "energy" if estimate_energy is True and switches["output_type"] in "TRAINING": output_path += "/{}/".format(training_dir_classification) step = "classification" if switches["output_type"] in "DL2": if force_tailcut_for_extended_cleaning is False: output_path += "/{}/".format(dl2_dir) else: output_path += "/{}_force_tc_extended_cleaning/".format(dl2_dir) step = "" output_filename += "_{}.h5" # sets all the local files that are going to be uploaded with the job # plus the pickled classifier # if file name starts with `LFN:`, it will be copied from the GRID input_sandbox = [ # Utility to assign one job to one command... os.path.expandvars("$GRID/pilot.sh"), os.path.expandvars("$PROTOPIPE/protopipe/"), os.path.expandvars("$GRID/merge_tables.py"), # python wrapper for the mr_filter wavelet cleaning # os.path.expandvars("$PYWI/pywi/"), # os.path.expandvars("$PYWICTA/pywicta/"), # script that is being run os.path.expandvars("$PROTOPIPE/protopipe/scripts/" + execute), # Configuration file os.path.expandvars(os.path.join(config_path, config_file)), ] models_to_upload = [] configs_to_upload = [] if estimate_energy is True and switches["output_type"] in "TRAINING": config_path_template = "LFN:" + os.path.join(home_grid, outdir, model_dir, "{}.yaml") config_to_upload = config_path_template.format(regressor_method) model_path_template = "LFN:" + os.path.join( home_grid, outdir, model_dir, "regressor_{}_{}.pkl.gz") for cam_id in cam_id_list: model_to_upload = model_path_template.format( cam_id, regressor_method) # TBC print("The following model(s) will be uploaded to the GRID:") print(model_to_upload) models_to_upload.append(model_to_upload) print( "The following configs(s) for such models will be uploaded to the GRID:" ) print(config_to_upload) configs_to_upload.append(config_to_upload) # input_sandbox.append(model_to_upload) elif estimate_energy is False and switches["output_type"] in "TRAINING": pass else: # Charge also classifer for DL2 model_type_list = ["regressor", "classifier"] model_method_list = [regressor_method, classifier_method] config_path_template = "LFN:" + os.path.join(home_grid, outdir, model_dir, "{}.yaml") model_path_template = "LFN:" + os.path.join( home_grid, outdir, model_dir, "{}_{}_{}.pkl.gz") if force_tailcut_for_extended_cleaning is True: force_mode = mode.replace("wave", "tail") print("################") print(force_mode) else: force_mode = mode for idx, model_type in enumerate(model_type_list): print( "The following configuration file will be uploaded to the GRID:" ) config_to_upload = config_path_template.format( model_method_list[idx]) print(config_to_upload) configs_to_upload.append(config_to_upload) # upload only 1 copy print( "The following model(s) related to such configuration file will be uploaded to the GRID:" ) for cam_id in cam_id_list: if model_type in "regressor" and use_regressor is False: print("Do not upload regressor model on GRID!!!") continue if model_type in "classifier" and use_classifier is False: print("Do not upload classifier model on GRID!!!") continue model_to_upload = model_path_template.format( model_type_list[idx], cam_id, model_method_list[idx]) print(model_to_upload) models_to_upload.append(model_to_upload) # input_sandbox.append(model_to_upload) # summary before submitting print("\nDEBUG> running as:") print(pilot_args_write) print("\nDEBUG> with input_sandbox:") print(input_sandbox) print("\nDEBUG> with output file:") print(output_filename.format("{job_name}")) print("\nDEBUG> Particles:") print(particle) print("\nDEBUG> Energy estimation:") print(estimate_energy) # ######## ## ## ## ## ## ## #### ## ## ###### # ## ## ## ## ### ## ### ## ## ### ## ## ## # ## ## ## ## #### ## #### ## ## #### ## ## # ######## ## ## ## ## ## ## ## ## ## ## ## ## ## #### # ## ## ## ## ## #### ## #### ## ## #### ## ## # ## ## ## ## ## ### ## ### ## ## ### ## ## # ## ## ####### ## ## ## ## #### ## ## ###### # list of files on the GRID SE space # not submitting jobs where we already have the output batcmd = "dirac-dms-user-lfns --BaseDir {}".format( os.path.join(home_grid, output_path)) result = subprocess.check_output(batcmd, shell=True) try: grid_filelist = open(result.split()[-1]).read() except IOError: raise IOError("ERROR> cannot read GRID filelist...") # get jobs from today and yesterday... days = [] for i in range(2): # how many days do you want to look back? days.append( (datetime.date.today() - datetime.timedelta(days=i)).isoformat()) # get list of run_tokens that are currently running / waiting running_ids = set() running_names = [] for status in ["Waiting", "Running", "Checking"]: for day in days: try: [ running_ids.add(id) for id in dirac.selectJobs( status=status, date=day, owner=user_name)["Value"] ] except KeyError: pass n_jobs = len(running_ids) if n_jobs > 0: print("Scanning {} running/waiting jobs... please wait...".format( n_jobs)) for i, id in enumerate(running_ids): if ((100 * i) / n_jobs) % 5 == 0: print("\r{} %".format(((20 * i) / n_jobs) * 5)), jobname = dirac.getJobAttributes(id)["Value"]["JobName"] running_names.append(jobname) else: print("\n... done") for bunch in list_run_to_loop_on: # for bunch in bunches_of_run: # from IPython import embed # embed() # this selects the `runxxx` part of the first and last file in the run # list and joins them with a dash so that we get a nice identifier in # the output file name. # if there is only one file in the list, use only that one # run_token = re.split('_', bunch[+0])[3] # JLK JLK run_token = re.split("_", bunch[0])[3] if len(bunch) > 1: run_token = "-".join([run_token, re.split("_", bunch[-1])[3]]) print("-" * 50) print("-" * 50) # setting output name output_filenames = dict() if switches["output_type"] in "DL2": job_name = "protopipe_{}_{}_{}_{}_{}".format( config_name, switches["output_type"], particle, run_token, mode) output_filenames[mode] = output_filename.format("_".join( [particle, mode, run_token])) else: job_name = "protopipe_{}_{}_{}_{}_{}_{}".format( config_name, switches["output_type"], step, particle, run_token, mode) output_filenames[mode] = output_filename.format("_".join( [step, particle, mode, run_token])) # if job already running / waiting, skip if job_name in running_names: print("\n WARNING> {} still running\n".format(job_name)) continue print("Output file name: {}".format(output_filenames[mode])) # if file already in GRID storage, skip # (you cannot overwrite it there, delete it and resubmit) # (assumes tail and wave will always be written out together) already_exist = False file_on_grid = os.path.join(output_path, output_filenames[mode]) print("DEBUG> check for existing file on GRID...") if file_on_grid in grid_filelist: print("\n WARNING> {} already on GRID SE\n".format(job_name)) continue if n_jobs_max == 0: print("WARNING> maximum number of jobs to submit reached") print("WARNING> breaking loop now") break else: n_jobs_max -= 1 j = Job() # runtime in seconds times 8 (CPU normalisation factor) j.setCPUTime(6 * 3600 * 8) j.setName(job_name) j.setInputSandbox(input_sandbox) if banned_sites: j.setBannedSites(banned_sites) # Add simtel files as input data j.setInputData(bunch) for run_file in bunch: file_token = re.split("_", run_file)[3] # wait for a random number of seconds (up to five minutes) before # starting to add a bit more entropy in the starting times of the # dirac queries. # if too many jobs try in parallel to access the SEs, # the interface crashes # #sleep = random.randint(0, 20) # seconds # #j.setExecutable('sleep', str(sleep)) # JLK: Try to stop doing that # consecutively downloads the data files, processes them, # deletes the input # and goes on to the next input file; # afterwards, the output files are merged # j.setExecutable('dirac-dms-get-file', "LFN:" + run_file) # source the miniconda ctapipe environment and # run the python script with all its arguments if switches["output_type"] in "DL2": output_filename_temp = output_filename.format("_".join( [particle, mode, file_token])) if switches["output_type"] in "TRAINING": output_filename_temp = output_filename.format("_".join( [step, particle, mode, file_token])) j.setExecutable( "./pilot.sh", pilot_args_write.format( outfile=output_filename_temp, infile_name=os.path.basename(run_file), mode=mode, ), ) # remove the current file to clear space j.setExecutable("rm", os.path.basename(run_file)) # simple `ls` for good measure j.setExecutable("ls", "-lh") # if there is more than one file per job, merge the output tables if len(bunch) > 1: names = [] names.append(("*_{}_".format(particle), output_filenames[mode])) for in_name, out_name in names: print("in_name: {}, out_name: {}".format(in_name, out_name)) j.setExecutable( "./pilot.sh", pilot_args_merge.format(in_name=in_name, out_name=out_name), ) print("DEBUG> args append: {}".format( pilot_args_merge.format(in_name=in_name, out_name=out_name))) bunch.extend(models_to_upload) bunch.extend(configs_to_upload) j.setInputData(bunch) print("Input data set to job = {}".format(bunch)) outputs = [] outputs.append(output_filenames[mode]) print("Output file path: {}{}".format(output_path, output_filenames[mode])) j.setOutputData(outputs, outputSE=None, outputPath=output_path) # check if we should somehow stop doing what we are doing if switches["dry"] is True: print("\nThis is a DRY RUN! -- NO job has been submitted!") print("Name of the job: {}".format(job_name)) print("Name of the output file: {}".format(outputs)) print("Output path from GRID home: {}".format(output_path)) break # this sends the job to the GRID and uploads all the # files into the input sandbox in the process print("\nSUBMITTING job with the following INPUT SANDBOX:") print(input_sandbox) print("Submission RESULT: {}\n".format(dirac.submitJob(j)["Value"])) # break if this is only a test submission if switches["test"] is True: print("This is a TEST RUN! -- Only ONE job will be submitted!") print("Name of the job: {}".format(job_name)) print("Name of the output file: {}".format(outputs)) print("Output path from GRID home: {}".format(output_path)) break # since there are two nested loops, need to break again if switches["test"] is True: break try: os.remove("datapipe.tar.gz") os.remove("modules.tar.gz") except: pass # Upload analysis configuration file for provenance SE_LIST = ['CC-IN2P3-USER', 'DESY-ZN-USER', 'CNAF-USER', 'CEA-USER'] analysis_config_local = os.path.join(config_path, config_file) # the configuration file is uploaded to the data directory because # the training samples (as well as their cleaning settings) are independent analysis_config_dirac = os.path.join(home_grid, output_path, config_file) print("Uploading {} to {}...".format(analysis_config_local, analysis_config_dirac)) if switches["dry"] is False: # Upload this file to all Dirac Storage Elements in SE_LIST for se in SE_LIST: # the uploaded config file overwrites any old copy ana_cfg_upload_cmd = "dirac-dms-add-file -f {} {} {}".format( analysis_config_dirac, analysis_config_local, se) ana_cfg_upload_result = subprocess.check_output(ana_cfg_upload_cmd, shell=True) print(ana_cfg_upload_result) else: print("This is a DRY RUN! -- analysis.yaml has NOT been uploaded.") print("\nall done -- exiting now") exit()
# Set the name of the job (viewable in the web portal). j.setName(jobname) # j.setExecutable('/bin/sh', arguments='%s %s %s' % ('run.sh', '/cvmfs/cernatschool.gridpp.ac.uk/grid-klustering-001-00-07/', 'process-frames.py')) # j.setInputSandbox(inputfiles) #...and added to the desired storage element with the corresponding # LFN via the job's OutputData. You may wish to change: # * The Storage Element - by changing the outputSE parameter; # * The LFN base name - by changing the outputPath parameter. j.setOutputData(kluster_file_names, \ outputSE='%s' % (se), \ outputPath='/%s/' % (gridoutdir)\ ) # These are the files retrieved with the local job output. j.setOutputSandbox(['StdOut', 'StdErr', 'klusters.json', 'log_process_frames.log']) # You can set your preferred site here. j.setDestination(sitename) ## The DIRAC instance. dirac = Dirac() # # Submit the job and print the result. # result = dirac.submit(j) # print 'Submission result: ', result
from DIRAC.Core.Base import Script Script.parseCommandLine() from DIRAC.Interfaces.API.Dirac import Dirac from DIRAC.Interfaces.API.Job import Job dirac = Dirac() j = Job() j.setName("compile_mrfilter") j.setCPUTime(80) j.setInputSandbox(["dirac_compile_mrfilter_pilot.sh"]) j.setExecutable("dirac_compile_mrfilter_pilot.sh", "") j.setOutputData(["mr_filter"], outputSE=None, outputPath="cta/bin/mr_filter/v3_1/") Dirac().submit(j)
#for in_name, out_name in [('classified_events_wave', output_filename_wave), # ('classified_events_tail', output_filename_tail)]: j.setExecutable( './pilot.sh', pilot_args_append.format(in_name=in_name, out_name=out_name)) outputs = [] for mode in modes: outputs.append(output_filenames[mode]) print("OutputData: {}{}".format(output_path, output_filenames[mode])) #print("OutputData: {}{}".format(output_path, output_filename_wave)) #print("OutputData: {}{}".format(output_path, output_filename_tail)) #j.setOutputData([output_filename_wave, output_filename_tail], j.setOutputData(outputs, outputSE=None, outputPath=output_path) # check if we should somehow stop doing what we are doing if "dry" in sys.argv: print("\nrunning dry -- not submitting") break # this sends the job to the GRID and uploads all the # files into the input sandbox in the process print("\nsubmitting job") print('Submission Result: {}\n'.format(dirac.submit(j)['Value'])) # break if this is only a test submission if "test" in sys.argv: print("test run -- only submitting one job") break
## prepare the output location in GRID storage; the input path will be the used also for GRID storage # outdir = grid_basedir_output + PROD_NAME + "/" + str(e_min) + "_" + str(e_max) + "/" + str(theta_min) + "_" + str(theta_max) + "/" + str(prmpar) + "/" + str(runnr) # outdir = "/" + PROD_NAME + "/" + str(e_min) + "_" + str(e_max) + "/" + str(theta_min) + "_" + str(theta_max) + "/" + str(prmpar) + "/" + str(runnr) outdir = "/" + PROD_NAME + "/" + str(e_min) + "/" + str(theta_min) + "/" + str(prmpar) + "/" + str(runnr) print 'SE = ',se lfns_list = [] if ( group == "auger_prod" ): base_output_path = prod_path ## add base directory to each file to have a list of lfns for f in output_files: lfn = "LFN:" + base_output_path + outdir + "/" + f lfns_list.append(lfn) j.setOutputData(lfns_list, outputSE=se) print 'Output - list of lfns :' pp.pprint (lfns_list) else: ## base_output_path = PWD j.setOutputData(output_files, outputSE=se, outputPath=outdir) print 'Output files = ', output_files print 'outputPath = ', outdir ##################### ## PREPARE JOB ## ##################### if (DO_NOT_SUBMIT): sys.exit(os.EX_USAGE) ### ALWAYS, INFO, VERBOSE, WARN, DEBUG
j.setCPUTime(345600) ## 4 days ## download the script for preparing corsika input file for usage with cvmfs j.setExecutable( 'curl', arguments = ' -fsSLkO http://issaf.spacescience.ro/adrian/AUGER/make_run4cvmfs',logFile='cmd_logs.log') j.setExecutable( 'chmod', arguments = ' +x make_run4cvmfs',logFile='cmd_logs.log') ## create the simulation script configured for use with cvmfs ## set the make_run4cvmfs arguments to include the corsika_version and corsika_bin make_run4cvmfs_arg = input_file_base + " " + corsika_version + " " + corsika_bin j.setExecutable( './make_run4cvmfs', arguments = make_run4cvmfs_arg, logFile='cmd_logs.log') ## run simulation j.setExecutable( './execsim',logFile='cmd_logs.log') j.setOutputSandbox(output_files) j.setOutputData(output_files, outputSE=se, outputPath=outdir) ##j.runLocal() ## test local jobID = dirac.submit(j) print 'Submission Result: ',jobID id = str(jobID) + "\n" with open('jobids.list', 'a') as f_id_log: f_id_log.write(jobID.Value + '\n')
args = visit + ' ' + insidename + ' ' + str(startsensor) + ' ' + str( numsensors) + ' ' + str(idx) outputname = 'fits_' + visit + '_' + str(idx) + '.tar' j.setCPUTime(1209600) j.setExecutable('runimsim2.1.sh', arguments=args) j.stderr = "std.err" j.stdout = "std.out" #!!! May need the 2.1i directory here depending on visit number !!! j.setInputSandbox([ "runimsim2.1.sh", "run_imsim_nersc.py", "LFN:/lsst/user/j/james.perry/instcats/2.1i/" + instcatname ]) j.setOutputSandbox(["std.out", "std.err"]) j.setTag(["8Processors"]) #j.setOutputData([visit + "/" + outputname], outputPath="", outputSE=["IN2P3-CC-disk"]) j.setOutputData([visit + "/" + outputname], outputPath="", outputSE=["UKI-NORTHGRID-LANCS-HEP-disk"]) j.setPlatform("AnyPlatform") j.setDestination(site) jobID = dirac.submitJob(j) print("Submitted job to " + site + " as ID " + str(jobID)) print "Status is:", dirac.status(jobID['JobID']) joblistfile.write(str(jobID['JobID']) + '\n') joblistfile.close()
# As we're just copying the input sandbox to the storage element # via OutputData, we'll just list the files as a check for the # output written to StdOut. j.setExecutable('/bin/ls -l') # Here we add the names of the temporary copies of the frame data # files in the dataset to the input sandbox. These will be uploaded # to the grid with the job... j.setInputSandbox(file_dict.keys()) #...and added to the desired storage element with the corresponding # LFN via the job's OutputData. You may wish to change: # * The Storage Element - by changing the outputSE parameter; # * The LFN base name - by changing the outputPath parameter. j.setOutputData(file_dict.keys(), \ outputSE='%s' % (se), \ outputPath='/%s/' % (gridoutdir)\ ) # These are the files retrieved with the local job output. j.setOutputSandbox(['StdOut', 'StdErr']) # You can set your preferred site here. j.setDestination(sitename) ## The DIRAC instance. dirac = Dirac() # # Submit the job and print the result. # result = dirac.submit(j) # print 'Submission result: ', result