# cost function cost = (nll_multiclass(mlp.output, it) + L1_reg * mlp.L1 + L2_reg * mlp.L2_sqr) pred = pred_multiclass(mlp.output) errors = pred_error(pred, it) params = flatten(mlp.params) print "training the MLP with rmsprop" optimize(dataset=dataset, inputs=inputs, cost=cost, params=params, errors=errors, n_epochs=1000, batch_size=20, patience=5000, patience_increase=1.5, improvement_threshold=0.995, optimizer="rmsprop") print "compiling the prediction function" predict = theano.function(inputs=[x], outputs=pred) distribution = theano.function(inputs=[x], outputs=mlp.output) print "predicting the first 10 samples of the test dataset" print "predict:", predict(mnist[2][0][0:10]) print "answer: ", mnist[2][1][0:10] print "with dropout, the output distributions should all be slightly different"
nll_multiclass(mlp.output, it) + L1_reg * mlp.L1 + L2_reg * mlp.L2_sqr ) pred = pred_multiclass(mlp.output) errors = pred_error(pred, it) params = flatten(mlp.params) print "training the MLP with adadelta" optimize(dataset=dataset, inputs=inputs, cost=cost, params=params, errors=errors, n_epochs=1000, batch_size=20, patience=5000, patience_increase=1.5, improvement_threshold=0.995, optimizer="adadelta") print "" print "compiling the prediction function" predict = theano.function(inputs=[x], outputs=pred) print "predicting the first 10 samples of the test dataset" print "predict:", predict(mnist[2][0][0:10]) print "answer: ", mnist[2][1][0:10]
pred = pred_multiclass(mlp.output) errors = pred_error(pred, it) params = flatten(mlp.params) print "training the MLP with rmsprop" losses = optimize( dataset=dataset, inputs=inputs, cost=cost, params=params, errors=errors, n_epochs=2, batch_size=20, patience=5000, patience_increase=1.5, improvement_threshold=0.995, optimizer='rmsprop' ) print "compiling the prediction function" predict = theano.function(inputs=[x], outputs=pred) print "predicting the first 10 samples of the test dataset" print "predict:", predict(mnist[2][0][0:10]) print "answer: ", mnist[2][1][0:10]
) pred = pred_multiclass(y) errors = pred_error(pred, it) params = flatten(layers_params(layers)) print "training the LSTM with adadelta" optimize(dataset=dataset, inputs=inputs, cost=cost, params=params, errors=errors, n_epochs=200, batch_size=64, patience=1500, patience_increase=1.25, improvement_threshold=0.995, test_batches=1, print_cost=True, optimizer="adadelta") print "compiling the prediction function" predict = theano.function(inputs=[x, mask], outputs=pred) print "predicting the first 10 samples of the test dataset" print "predict:", predict(dataset[2][0].get_value()[0:10], dataset[2][-1].get_value()[0:10]) print "answer: ", dataset[2][1].get_value()[0:10]
+ L1_reg * mlp.L1 + L2_reg * mlp.L2_sqr ) pred = pred_multiclass(mlp.output) errors = pred_error(pred, it) params = flatten(mlp.params) print "training the MLP with sgd" optimize(dataset=dataset, inputs=inputs, cost=cost, params=params, errors=errors, learning_rate=0.01, momentum=0.2, n_epochs=1000, batch_size=20, patience=1000, patience_increase=1.5, improvement_threshold=0.995, optimizer="sgd") print "compiling the prediction function" predict = theano.function(inputs=[x], outputs=pred) print "predicting the first 10 samples of the test dataset" print "predict:", predict(mnist[2][0][0:10]) print "answer: ", mnist[2][1][0:10]