from Data.DataManager import DataManager from ScriptToolkit import ScriptToolkit from Preprocessing.DataReader import DataReader from Preprocessing import ProcessorFactory from Model.ConditionalRandomField import CRF if __name__ == '__main__': # create data manager DM = DataManager() DM.change_pwd() DM.source_data_file = 'CorpusLabelData_SalesModule.txt' DM.remove(DM.log_wrong_sentences) # create datums DR = DataReader(source_data_file=DM.source_data_file) DR.standard_read() # create toolkits ST = ScriptToolkit(DM) features = ScriptToolkit.get_demo_features() # analysis sent_accuracys, train_times, test_times = [], [], [] cycle_times = 30 for i in range(cycle_times): # data preprocessing crf_processor = ProcessorFactory.CRFProcessorFactory().produce( source_data_file=DM.source_data_file, train_file=DM.train_file, test_file=DM.test_file) crf_processor.get_train_data(DR.Datums)
import Model from Data.DataManager import DataManager import numpy as np import pandas as pd # Dash and plotly import dash import plotly.express as px import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output, State import plotly.graph_objects as go ### Variables ### dm = DataManager() options = [{'label' : stock, 'value' : stock, 'disabled' : not available} for (stock,available) in zip(dm.retrieveInformation(columns="Kortnamn"),dm.priceAvailable())] d = dm.getOptionsAvailable() stock_info = dm.retrieveInformation() app = dash.Dash(__name__, external_stylesheets=["Datascience\Projects\Effective frontier\Assets\Layout.css"]) app.layout = html.Div( children=[ ### Top part ### html.Div(children = [ html.H1("Stocks", style={ 'textAlign': 'center', 'color':"#ffffff"
from Data.DataManager import DataManager from ScriptToolkit import ScriptToolkit from Preprocessing.DataReader import DataReader from Preprocessing import ProcessorFactory from Model.ConditionalRandomField import CRF if __name__ == '__main__': # create data manager DM = DataManager() DM.change_pwd() DM.source_data_file = 'CorpusLabelData_MergedFilter.txt' DM.remove(DM.log_wrong_sentences) # create datums DR = DataReader(source_data_file=DM.source_data_file) DR.standard_read() # create toolkits ST = ScriptToolkit(DM) features = ScriptToolkit.get_demo_features() # analysis sent_accuracys = [] cycle_times = 1 for i in range(cycle_times): # data preprocessing # crf_processor = ProcessorFactory.CRFProcessorFactory().produce(source_data_file=DM.source_data_file, # train_file=DM.train_file, test_file=DM.test_file) # crf_processor.get_train_data(DR.Datums) null2o_processor = ProcessorFactory.ReplaceNullWithOPreprocessorFactory( ).produce(train_file=DM.train_file, test_file=DM.test_file)
from Preprocessing import Preprocessor from Data.DataManager import DataManager class Provider(object): def produce(self, **kw): pass class CRFProcessorFactory(Provider): def produce(self, **kw): return Preprocessor.CRFPreprocessor(**kw) class LSTMProcessorFactory(Provider): def produce(self, **kw): return Preprocessor.LSTMPreprocessor(**kw) if __name__ == '__main__': DM = DataManager() DM.change_pwd() DM.source_data_file = 'CorpusLabelData_MergedFilter_Update.txt' crf_factory = CRFProcessorFactory() crf_processor = crf_factory.produce(source_data_file=DM.source_data_file, train_file=DM.train_file, test_file=DM.test_file) crf_processor.preprocess() crf_processor.get_train_data()
from Data.DataManager import DataManager from Preprocessing import ProcessorFactory from Model.ConditionalRandomField import CRF from ScriptToolkit import ScriptToolkit from Preprocessing.DataReader import DataReader if __name__ == '__main__': # create data manager DM = DataManager() DM.change_pwd() DM.remove(DM.log_wrong_sentences) # create toolkits ST = ScriptToolkit(DM) features = ScriptToolkit.get_demo_features() # analysis cycle_times = 1 sent_accuracys, sent_accuracys_f = [], [] for i in range(cycle_times): DM.source_data_file = 'CorpusLabelData_MergedFilter.txt' # change source data as old corpus # create datums DR = DataReader(source_data_file=DM.source_data_file) DR.standard_read() # data preprocessing crf_processor = ProcessorFactory.CRFProcessorFactory().produce( source_data_file=DM.source_data_file, train_file=DM.train_file, test_file=DM.test_file) crf_processor.get_train_data(DR.Datums)
# -*- coding:utf-8 -*- from sys import argv from Data.DataManager import DataManager from Scripts.ScriptToolkit import ScriptToolkit from Preprocessing.DataReader import DataReader from Preprocessing import ProcessorFactory from Model.ConditionalRandomField import CRF if __name__ == '__main__': # create data manager DM = DataManager() DM.change_pwd() DM.source_data_file = argv[ argv.index("-source") + 1] if "-source" in argv else 'CorpusLabelData_MergedFilter.txt' DM.remove(DM.log_wrong_sentences) # create datums DR = DataReader(source_data_file=DM.source_data_file) DR.standard_read() # create toolkits ST = ScriptToolkit(DM) features = ScriptToolkit.get_demo_features() # analysis sent_accuracys, train_times, test_times = [], [], [] cycle_times = int(argv[argv.index("-iter") + 1]) if "-iter" in argv else 10 for i in range(cycle_times): print "This is the %d-th experiments." % (i + 1)
from Scripts.ScriptToolkit import ScriptToolkit from Preprocessing.DataReader import DataReader from Data.DataManager import DataManager if __name__ == '__main__': # create data manager DM = DataManager() DM.change_pwd() DM.source_data_file = 'CorpusLabelData_SalesModule.txt' # create datums DR = DataReader(source_data_file=DM.source_data_file) DR.standard_read() # create toolkits ST = ScriptToolkit(DM) # analysis sentences_amount, tokens_amount, tokens_distribution, glabels_distribution = ScriptToolkit.StatisticDatums( DR.Datums) # result display print 'Sentences Amount is %d' % (sentences_amount) print 'Tokens Amount is %d' % (tokens_amount) print 'Tokens distribution is:' print tokens_distribution print 'glabels_distribution is:' print glabels_distribution
import os import csv import matplotlib.pyplot as plt from Core.Stock import Stock from Data.DataManager import DataManager dm = DataManager() data_manager = dm.get_instance() issuer_list = data_manager.get_issuers() for issuer in issuer_list: print("\n{} {} {}\n".format(issuer.id, issuer.ticker, issuer.name)) stock_list = data_manager.get_stocks_by_issuer_id(issuer.id) high_stocks = [] for stock in stock_list: print("{} {} {} {} {} {} {} {} {}".format(stock.id, stock.ticker, stock.per, stock.trade_date, stock.open, stock.high, stock.low, stock.close, stock.volume)) rpl = Stock.nth_repl_all(stock.high, '.', '', 2) high_stocks.append(float(rpl)) plt.plot(high_stocks) plt.show() print("\nCompleted")
import os from Data.DataManager import DataManager from Preprocessing import ProcessorFactory from Model.ConditionalRandomField import CRF from Scripts.ScriptToolkit import ScriptToolkit from Preprocessing.DataReader import DataReader if __name__ == '__main__': # create data manager DM = DataManager() DM.change_pwd() DM.source_data_file = 'CorpusLabelData_SalesModule.txt' DM.remove(DM.features_train) DM.remove(DM.features_test) # create datums DR = DataReader(source_data_file=DM.source_data_file) DR.standard_read() # create toolkits ST = ScriptToolkit(DM) features = ScriptToolkit.get_demo_features() # feature setting features['printFeatures'] = '1' feature_sets = [features] # feature_sets = ScriptToolkit.get_custom_features('custom_features.txt') train_times = [] sent_accuracys = [] for features in feature_sets:
def verify_by_sentence(self, sentence): pass def verify(self, file=''): if not file: file = self.test_file command = self.command_line + ' -loadClassifier ' + self.model_filename + ' -testFile ' + file cmd = shlex.split(command) sout, serr = java(cmd, classpath=self.path_to_jar, stdout=PIPE, stderr=PIPE) print '--------------------TEST------------------------' print serr return sout, serr def train_and_verify(self, train_file='', test_file=''): if not train_file: train_file = self.train_file if not test_file: test_file = self.test_file sout_train, serr_train = self.train(train_file) sout_test, serr_test = self.verify(test_file) return sout_train, serr_train, sout_test, serr_test if __name__ == '__main__': DM = DataManager() DM.change_pwd() crf_test = CRF(path_to_jar=DM.path_to_jar, prop_file=DM.prop_file, model_file=DM.model_file, train_file=DM.train_file, test_file=DM.test_file) crf_test.feature_config() crf_test.train() crf_test.verify()
from mesa.visualization.ModularVisualization import ModularServer from Data.DataManager import DataManager from Market.Shelf import Shelf from agents.Checkout import Checkout from agents.ShelfAgent import ShelfAgent from model.MarketModel import MarketModel from model.handlers import CustomersHandler, ColorChangeHandler, AgentCountsHandler article_dictionary = {} width = 50 height = 50 market = DataManager.initialize_market() def agent_portrayal(agent): if type(agent) is ShelfAgent: portrayal = { "Shape": "rect", "Color": "blue", "Filled": "true", "Layer": 0, "w": 0.9, "h": 0.9 } elif type(agent) is Checkout: portrayal = {