def pre_embed(config, alphabet): """ :param config: :param alphabet: :return: """ print("............................") pretrain_embed = None embed_types = "" if config.pretrained_embed and config.zeros: embed_types = "zeros" elif config.pretrained_embed and config.avg: embed_types = "avg" elif config.pretrained_embed and config.uniform: embed_types = "uniform" elif config.pretrained_embed and config.nnembed: embed_types = "nn" if config.pretrained_embed is True: p = Embed(path=config.pretrained_embed_file, words_dict=alphabet.word_alphabet.id2words, embed_type=embed_types, pad=paddingkey) pretrain_embed = p.get_embed() embed_dict = {"pretrain_embed": pretrain_embed} # pcl.save(obj=embed_dict, path=os.path.join(config.pkl_directory, config.pkl_embed)) torch.save(obj=embed_dict, f=os.path.join(config.pkl_directory, config.pkl_embed)) return pretrain_embed
def pre_embed(config, alphabet): """ :param config: config :param alphabet: alphabet dict :return: pre-train embed """ print("***************************************") pretrain_embed = None embed_types = "" if config.pretrained_embed and config.zeros: embed_types = "zero" elif config.pretrained_embed and config.avg: embed_types = "avg" elif config.pretrained_embed and config.uniform: embed_types = "uniform" elif config.pretrained_embed and config.nnembed: embed_types = "nn" if config.pretrained_embed is True: p = Embed(path=config.pretrained_embed_file, words_dict=alphabet.ext_word_alphabet.id2words, embed_type=embed_types, pad=PAD) pretrain_embed = p.get_embed() embed_dict = {"pretrain_embed": pretrain_embed} torch.save(obj=embed_dict, f=os.path.join(config.pkl_directory, config.pkl_embed)) return pretrain_embed
def pre_embed(config, alphabet, alphabet_static): """ :param alphabet_static: :param config: config :param alphabet: alphabet dict :return: pre-train embed """ print("***************************************") char_pretrain_embed, bichar_pretrain_embed = None, None embed_types = "" if (config.char_pretrained_embed is True or config.bichar_pretrained_embed is True) and config.zeros: embed_types = "zero" elif (config.char_pretrained_embed is True or config.bichar_pretrained_embed is True) and config.avg: embed_types = "avg" elif (config.char_pretrained_embed is True or config.bichar_pretrained_embed is True) and config.uniform: embed_types = "uniform" elif (config.char_pretrained_embed is True or config.bichar_pretrained_embed is True) and config.nnembed: embed_types = "nn" if config.char_pretrained_embed is True: p = Embed(path=config.char_pretrained_embed_file, words_dict=alphabet_static.char_alphabet.id2words, embed_type=embed_types, pad=paddingkey) char_pretrain_embed = p.get_embed() if config.bichar_pretrained_embed is True: p = Embed(path=config.bichar_pretrained_embed_file, words_dict=alphabet_static.bichar_alphabet.id2words, embed_type=embed_types, pad=paddingkey) bichar_pretrain_embed = p.get_embed() if config.char_pretrained_embed is True or config.bichar_pretrained_embed is True: embed_dict = {"char_pretrain_embed": char_pretrain_embed, "bichar_pretrain_embed": bichar_pretrain_embed} if config.save_pkl is True: pcl.save(obj=embed_dict, path=os.path.join(config.pkl_directory, config.pkl_embed)) return char_pretrain_embed, bichar_pretrain_embed