def _get_detections(generator, model, score_threshold=0.05, max_detections=100, save_path=None, experiment=None): """ Get the detections from the model using the generator. The result is a list of lists such that the size is: all_detections[num_images][num_classes] = detections[num_detections, 4 + num_classes] # Arguments generator : The generator used to run images through the model. model : The model to run on the images. score_threshold : The score confidence threshold to use. max_detections : The maximum number of detections to use per image. save_path : The path to save the images with visualized detections to. experiment : Comet ML experiment # Returns A list of lists containing the detections for each image in the generator. """ all_detections = [[None for i in range(generator.num_classes())] for j in range(generator.size())] for i in range(generator.size()): raw_image = generator.load_image(i) #need to make contigious see https://stackoverflow.com/questions/23830618/python-opencv-typeerror-layout-of-the-output-array-incompatible-with-cvmat raw_image = raw_image.copy() #Skip if missing a component data source if raw_image is None: print("Empty image, skipping") continue image = generator.preprocess_image(raw_image) image, scale = generator.resize_image(image) if keras.backend.image_data_format() == 'channels_first': image = image.transpose((2, 0, 1)) # run network boxes, scores, labels = model.predict_on_batch( np.expand_dims(image, axis=0))[:3] # correct boxes for image scale boxes /= scale # select indices which have a score above the threshold indices = np.where(scores[0, :] > score_threshold)[0] # select those scores scores = scores[0][indices] # find the order with which to sort the scores scores_sort = np.argsort(-scores)[:max_detections] # select detections image_boxes = boxes[0, indices[scores_sort], :] image_scores = scores[scores_sort] image_labels = labels[0, indices[scores_sort]] image_detections = np.concatenate([ image_boxes, np.expand_dims(image_scores, axis=1), np.expand_dims(image_labels, axis=1) ], axis=1) #drape boxes #get image name pc = postprocessing.drape_boxes( boxes=quality_boxes, tilename=generator.image_data[i]["tile"], lidar_dir=DeepForest_config["lidar_path"]) #Skip if point density is too low if pc: #Get new bounding boxes new_boxes = postprocessing.cloud_to_box(pc) if save_path is not None: draw_annotations(raw_image, generator.load_annotations(i), label_to_name=generator.label_to_name) draw_detections(raw_image, image_boxes, image_scores, image_labels, label_to_name=generator.label_to_name, score_threshold=score_threshold) image_name = generator.image_names[i] row = generator.image_data[image_name] fname = os.path.splitext(row["tile"])[0] + "_" + str(row["window"]) #Write RGB cv2.imwrite(os.path.join(save_path, '{}.png'.format(fname)), raw_image) if experiment: experiment.log_image(os.path.join(save_path, '{}.png'.format(fname)), file_name=fname) # copy detections to all_detections for label in range(generator.num_classes()): all_detections[i][label] = image_detections[ image_detections[:, -1] == label, :-1] #print('{}/{}'.format(i + 1, generator.size()), end='\r') return all_detections
def _get_detections(generator, model, score_threshold=0.05, max_detections=100, save_path=None, experiment=None): """ Get the detections from the model using the generator. The result is a list of lists such that the size is: all_detections[num_images][num_classes] = detections[num_detections, 4 + num_classes] # Arguments generator : The generator used to run images through the model. model : The model to run on the images. score_threshold : The score confidence threshold to use. max_detections : The maximum number of detections to use per image. save_path : The path to save the images with visualized detections to. experiment : Comet ML experiment # Returns A list of lists containing the detections for each image in the generator. """ all_detections = [[None for i in range(generator.num_classes())] for j in range(generator.size())] for i in range(generator.size()): raw_image = generator.load_image(i) plot_image = copy.deepcopy(raw_image) #Format name and save image_name = generator.image_names[i] row = generator.image_data[image_name] lfname = os.path.splitext(row["tile"])[0] + "_" + str(row["window"]) +"raw_image" #Skip if missing a component data source if raw_image is False: print("Empty image, skipping") continue #Store plotting images plot_rgb = plot_image[:,:,:3].copy() plot_chm = plot_image[:,:,3] #predict image = generator.preprocess_image(raw_image) image, scale = generator.resize_image(image) if keras.backend.image_data_format() == 'channels_first': image = image.transpose((2, 0, 1)) # run network boxes, scores, labels = model.predict_on_batch(np.expand_dims(image, axis=0))[:3] # correct boxes for image scale boxes /= scale # select indices which have a score above the threshold indices = np.where(scores[0, :] > score_threshold)[0] # select those scores scores = scores[0][indices] # find the order with which to sort the scores scores_sort = np.argsort(-scores)[:max_detections] # select detections image_boxes = boxes[0, indices[scores_sort], :] image_scores = scores[scores_sort] image_labels = labels[0, indices[scores_sort]] image_detections = np.concatenate([image_boxes, np.expand_dims(image_scores, axis=1), np.expand_dims(image_labels, axis=1)], axis=1) #name image image_name = generator.image_names[i] row = generator.image_data[image_name] fname = os.path.splitext(row["tile"])[0] + "_" + str(row["window"]) #drape boxes #get lidar cloud if a new tile, or if not the same tile as previous image. if generator.with_lidar: if i == 0: generator.load_lidar_tile() elif not generator.image_data[i]["tile"] == generator.image_data[i-1]["tile"]: generator.load_lidar_tile() #The tile could be the full tile, so let's check just the 400 pixel crop we are interested #Not the best structure, but the on-the-fly generator always has 0 bounds if hasattr(generator, 'hf'): bounds = generator.hf["utm_coords"][generator.row["window"]] else: bounds=[] if generator.with_lidar: density = Lidar.check_density(generator.lidar_tile, bounds=bounds) if density > 100: #find window utm coordinates #print("Bounds for image {}, window {}, are {}".format(generator.row["tile"], generator.row["window"], bounds)) pc = postprocessing.drape_boxes(boxes=image_boxes, pc = generator.lidar_tile, bounds=bounds) #Get new bounding boxes image_boxes = postprocessing.cloud_to_box(pc, bounds) image_scores = image_scores[:image_boxes.shape[0]] image_labels = image_labels[:image_boxes.shape[0]] image_detections = np.concatenate([image_boxes, np.expand_dims(image_scores, axis=1), np.expand_dims(image_labels, axis=1)], axis=1) else: pass #print("Point density of {:.2f} is too low, skipping image {}".format(density, generator.row["tile"])) if save_path is not None: draw_annotations(plot_rgb, generator.load_annotations(i), label_to_name=generator.label_to_name) draw_detections(plot_rgb, image_boxes, image_scores, image_labels, label_to_name=generator.label_to_name,score_threshold=score_threshold) #name image image_name=generator.image_names[i] row=generator.image_data[image_name] fname=os.path.splitext(row["tile"])[0] + "_" + str(row["window"]) #Write RGB cv2.imwrite(os.path.join(save_path, '{}.png'.format(fname)), plot_rgb) #Format name and save image_name = generator.image_names[i] row = generator.image_data[image_name] lfname = os.path.splitext(row["tile"])[0] + "_" + str(row["window"]) +"_lidar" #make cv2 colormap #normalize visual to make clearer for plotting plot_chm = plot_chm/plot_chm.max() * 255 chm = np.uint8(plot_chm) draw_annotations(chm, generator.load_annotations(i), label_to_name=generator.label_to_name) draw_detections(chm, image_boxes, image_scores, image_labels, label_to_name=generator.label_to_name,score_threshold=score_threshold) #Write CHM cv2.imwrite(os.path.join(save_path, '{}_LIDAR.png'.format(lfname)), chm) if experiment: experiment.log_image(os.path.join(save_path, '{}_LIDAR.png'.format(lfname)),file_name=lfname) experiment.log_image(os.path.join(save_path, '{}.png'.format(fname)),file_name=fname) # copy detections to all_detections for label in range(generator.num_classes()): all_detections[i][label] = image_detections[image_detections[:, -1] == label, :-1] return all_detections
# scores are sorted so we can break if score < args.score_threshold: break #drape boxes #get image name and load point cloud image_name = os.path.splitext(os.path.basename(image_path))[0] point_cloud_filename = os.path.join(DeepForest_config["lidar_path"] + image_name) + ".laz" pc = Lidar.load_lidar(point_cloud_filename) pc = postprocessing.drape_boxes(boxes=quality_boxes, pc=pc) #Skip if point density is too low if pc: #Get new bounding boxes new_boxes = postprocessing.cloud_to_box(pc) #expends 3dim new_boxes = np.expand_dims(new_boxes, 0) # visualize detections for box, score, label in zip(new_boxes[0], scores[0], labels[0]): # scores are sorted so we can break if score < args.score_threshold: break color = label_color(label) b = box.astype(int) draw_box(draw, b, color=(0, 90, 255)) #caption = "{} {:.2f}".format(labels_to_names[label], score)
def neonRecall( sites, generator, model, score_threshold=0.05, max_detections=100, suppression_threshold=0.15, save_path=None, experiment=None): point_contains = [ ] site_data_dict = {} for site in sites: #Container for recall pts. #load field data field_data = pd.read_csv("data/field_data.csv") field_data = field_data[field_data['UTM_E'].notnull()] #select site site_data = field_data[field_data["siteID"]==site] #select tree species specieslist = pd.read_csv("data/AcceptedSpecies.csv",encoding="utf-8") specieslist = specieslist[specieslist["siteID"] == site] site_data = site_data[site_data["scientificName"].isin(specieslist["scientificName"].values)] #Single bole individuals as representitve, no individualID ending in non-digits site_data = site_data[site_data["individualID"].str.contains("\d$")] site_data_dict[site] = site_data #Only data within the last two years, sites can be hand managed #site_data=site_data[site_data["eventID"].str.contains("2015|2016|2017|2018")] for i in range(generator.size()): #Load image raw_image = generator.load_image(i) plot_image = copy.deepcopy(raw_image) #Skip if missing a component data source if raw_image is False: print("Empty image, skipping") continue #Store plotting images. plot_rgb = plot_image[:,:,:3].copy() plot_chm = plot_image[:,:,3] image = generator.preprocess_image(raw_image) image, scale = generator.resize_image(image) # run network boxes, scores, labels = model.predict_on_batch(np.expand_dims(image, axis=0))[:3] # correct boxes for image scale boxes /= scale # select indices which have a score above the threshold indices = np.where(scores[0, :] > score_threshold)[0] # select those scores scores = scores[0][indices] # find the order with which to sort the scores scores_sort = np.argsort(-scores)[:max_detections] # select detections image_boxes = boxes[0, indices[scores_sort], :] image_scores = scores[scores_sort] image_labels = labels[0, indices[scores_sort]] image_detections = np.concatenate([image_boxes, np.expand_dims(image_scores, axis=1), np.expand_dims(image_labels, axis=1)], axis=1) #Find geographic bounds base_dir = generator.DeepForest_config[generator.row["site"]][generator.name]["RGB"] tile_path = os.path.join(base_dir, generator.image_data[i]["tile"]) with rasterio.open(tile_path) as dataset: tile_bounds = dataset.bounds #drape boxes #get lidar cloud if a new tile, or if not the same tile as previous image. if i == 0: generator.load_lidar_tile() elif not generator.image_data[i]["tile"] == generator.image_data[i-1]["tile"]: generator.load_lidar_tile() #The tile could be the full tile, so let's check just the 400 pixel crop we are interested #Not the best structure, but the on-the-fly generator always has 0 bounds if hasattr(generator, 'hf'): bounds = generator.hf["utm_coords"][generator.row["window"]] else: bounds=[] density = Lidar.check_density(generator.lidar_tile, bounds=bounds) #print("Point density is {:.2f}".format(density)) if density > 100: #find window utm coordinates #print("Bounds for image {}, window {}, are {}".format(generator.row["tile"], generator.row["window"], bounds)) pc = postprocessing.drape_boxes(boxes=image_boxes, pc = generator.lidar_tile, bounds=bounds) #Get new bounding boxes new_boxes = postprocessing.cloud_to_box(pc, bounds) new_scores = image_scores[:new_boxes.shape[0]] new_labels = image_labels[:new_boxes.shape[0]] image_detections = np.concatenate([new_boxes, np.expand_dims(new_scores, axis=1), np.expand_dims(new_labels, axis=1)], axis=1) else: #print("Point density of {:.2f} is too low, skipping image {}".format(density, generator.row["tile"])) pass #add spatial NEON points site_data =site_data_dict[generator.row["site"]] plotID = os.path.splitext(generator.image_data[i]["tile"])[0] plot_data = site_data[site_data.plotID == plotID] #Save image and send it to logger if save_path is not None: x = (plot_data.UTM_E - tile_bounds.left).values / 0.1 y = (tile_bounds.top - plot_data.UTM_N).values / 0.1 for j in np.arange(len(x)): cv2.circle(plot_image,(int(x[j]),int(y[j])), 2, (0,0,255), -1) #Write RGB draw_detections(plot_rgb, image_boxes, image_scores, image_labels, label_to_name=generator.label_to_name,score_threshold=score_threshold) #name image image_name=generator.image_names[i] row=generator.image_data[image_name] fname=os.path.splitext(row["tile"])[0] + "_" + str(row["window"]) #Write RGB cv2.imwrite(os.path.join(save_path, '{}_NeonPlot.png'.format(fname)), plot_rgb) plot_chm = plot_chm/plot_chm.max() * 255 chm = np.uint8(plot_chm) draw_detections(chm, image_boxes, image_scores, image_labels, label_to_name=generator.label_to_name, score_threshold=score_threshold, color = (80,127,255)) cv2.imwrite(os.path.join(save_path, '{}_Lidar_NeonPlot.png'.format(plotID)), chm) #Format name and save if experiment: experiment.log_image(os.path.join(save_path, '{}_NeonPlot.png'.format(plotID)),file_name=str(plotID)) experiment.log_image(os.path.join(save_path, '{}_Lidar_NeonPlot.png'.format(plotID)),file_name=str("Lidar_" + plotID)) #calculate recall s = gp.GeoSeries(map(Point, zip(plot_data.UTM_E, plot_data.UTM_N))) #Calculate recall projected_boxes = [] for row in image_boxes: #Add utm bounds and create a shapely polygon pbox=create_polygon(row, tile_bounds, cell_size=0.1) projected_boxes.append(pbox) #for each point, is it within a prediction? for index, tree in plot_data.iterrows(): p=Point(tree.UTM_E, tree.UTM_N) within_polygon=[] for prediction in projected_boxes: within_polygon.append(p.within(prediction)) #Check for overlapping polygon, add it to list is_within = sum(within_polygon) > 0 point_contains.append(is_within) #sum recall across plots if len(point_contains)==0: recall = None else: ## Recall rate for plot recall = sum(point_contains)/len(point_contains) return(recall)