mode = mode_parser.parse_args() #set experiment and log configs experiment = Experiment(api_key="ypQZhYfs3nSyKzOfz13iuJpj2",project_name='deeplidar',log_code=True) DeepForest_config = load_config() #Log parameters experiment.log_parameter("Start Time", mode.dir) experiment.log_parameter("Training Mode", mode.mode) experiment.log_parameters(DeepForest_config) DeepForest_config["mode"] = mode.mode if mode.mode == "train": data = load_training_data(DeepForest_config) if mode.mode == "retrain": data = load_retraining_data(DeepForest_config) for x in DeepForest_config["evaluation_site"]: DeepForest_config[x]["h5"] = os.path.join(DeepForest_config[x]["h5"],"hand_annotations") #pass an args object instead of using command line args = [ "--batch-size", str(DeepForest_config['batch_size']), '--score-threshold', str(DeepForest_config['score_threshold']), '--suppression-threshold', '0.1', '--save-path', 'snapshots/images/', '--model', mode.saved_model, '--convert-model' ]
def test_train(): data = load_training_data(DeepForest_config) print("Data shape is {}".format(data.shape)) assert data.shape[0] > 0, "Data is empty"