def __init__(self, samplefile, output_file, use_event=0, afternbatches=-1, on_epoch_end=False): self.callback = PredictCallback( samplefile=samplefile, function_to_apply=self.make_plot, #needs to be function(counter,[model_input], [predict_output], [truth]) after_n_batches=afternbatches, on_epoch_end=on_epoch_end, use_event=-1, decay_function=None)
def __init__(self, samplefile, output_file, use_event=0, x_index=5, y_index=6, z_index=7, e_index=0, cut_z=None, plotter=None, plotfunc=None, afternbatches=-1, on_epoch_end=True, decay_function=None): self.x_index = x_index self.y_index = y_index self.z_index = z_index self.e_index = e_index self.cut_z = cut_z if self.cut_z is not None: if 'pos' in self.cut_z: self.cut_z = 1. elif 'neg' in self.cut_z: self.cut_z = -1. self.decay_function = decay_function self.callback = PredictCallback( samplefile=samplefile, function_to_apply=self. make_plot, #needs to be function(counter,[model_input], [predict_output], [truth]) after_n_batches=afternbatches, on_epoch_end=on_epoch_end, use_event=use_event, decay_function=self.decay_function) self.output_file = output_file if plotter is not None: self.plotter = plotter else: self.plotter = plotter_fraction_colors(output_file=output_file) self.plotter.gray_noise = False if plotfunc is not None: self.plotfunc = plotfunc else: self.plotfunc = None
train.compileModel(learningrate=0.001, loss=['mean_squared_error'],) #metrics=usemetrics) print(train.keras_model.summary()) #exit() from tools import offset_plotter pltr = offset_plotter(train,relative=True) from DeepJetCore.training.DeepJet_callbacks import PredictCallback predcb=PredictCallback(samplefile=train.val_data.getSamplePath(train.val_data.samples[0]), function_to_apply=pltr.make_plot, after_n_batches=-1, #1000, batchsize=10000, on_epoch_end=True, use_event=-1) from training_scheduler import scheduled_training, Learning_sched learn=[] learn.append(Learning_sched(lr=1e-4, nepochs=1, batchsize=256,#128 #loss=[binned_global_correction_loss_random])) loss=[huber_loss_calo])) learn.append(Learning_sched(lr=1e-4, nepochs=19,