os.makedirs(dir_results) DTCR = DeepTCR_SS('alpha_v_beta_SS') antigens = ['ATP6AP1-KLG_G3W', 'GNL3L-R4C', 'MART1-A2L', 'YFV-LLW'] opt = ['alpha', 'beta', 'alpha_beta'] for a in antigens: y_pred_list = [] y_test_list = [] for o in opt: if o == 'alpha': DTCR = DeepTCR_SS('alpha_v_beta_SS') DTCR.Get_Data(directory='../../Data/Zhang/' + a, aa_column_alpha=0, p=p) elif o == 'beta': DTCR = DeepTCR_SS('alpha_v_beta_SS') DTCR.Get_Data(directory='../../Data/Zhang/' + a, aa_column_beta=1, p=p) elif o == 'alpha_beta': DTCR = DeepTCR_SS('alpha_v_beta_SS') DTCR.Get_Data(directory='../../Data/Zhang/' + a, aa_column_alpha=0, aa_column_beta=1, p=p) DTCR.Monte_Carlo_CrossVal(folds=50, weight_by_class=True) y_pred_list.append(DTCR.y_pred)
DTCRU.class_id, dir_results, metrics=['AUC']) df_u = pd.DataFrame() df_u['Class'] = df_metrics['Classes'] df_u['AUC'] = df_metrics['Value'] df_u['Method'] = df_metrics['Algorithm'] df_u['Type'] = 'Unsupervised' #Run Supervised Sequence Classifier DTCRS = DeepTCR_SS('Sequence_C', device=1) DTCRS.Get_Data(directory='../../Data/Murine_Antigens', Load_Prev_Data=True, aggregate_by_aa=True, aa_column_beta=0, count_column=1, v_beta_column=2, j_beta_column=3) AUC = [] Class = [] Method = [] folds = 100 seeds = np.array(range(folds)) for i in range(folds): np.random.seed(seeds[i]) DTCRS.Get_Train_Valid_Test() DTCRS.Train(graph_seed=graph_seed) DTCRS.AUC_Curve(plot=False) AUC.extend(DTCRS.AUC_DF['AUC'].tolist())
from DeepTCR.DeepTCR import DeepTCR_SS import numpy as np import matplotlib.pyplot as plt import pandas as pd from scipy.spatial.distance import pdist, squareform from scipy.stats import spearmanr import seaborn as sns import pickle import os import matplotlib matplotlib.rc('font', family='Arial') #Instantiate training object DTCRU = DeepTCR_SS('Murine_Sup') #Load Data DTCRU.Get_Data(directory='../../Data/Murine_Antigens', Load_Prev_Data=False, aa_column_beta=0, count_column=1, v_beta_column=2, j_beta_column=3, classes=['Db-F2', 'Db-M45', 'Db-NP', 'Db-PA', 'Db-PB1'])
"""Figure 3B""" """This script is used to train both the sequence and repertoire classifier on the Rudqvist_2017 dataset and compare their performances.""" from DeepTCR.DeepTCR import DeepTCR_SS, DeepTCR_WF from sklearn.metrics import roc_curve, roc_auc_score import numpy as np from matplotlib import pyplot as plt #Train Sequence Classifier DTCR_SS = DeepTCR_SS('Rudqvist_SS', device='/device:GPU:0') DTCR_SS.Get_Data(directory='../../Data/Rudqvist', Load_Prev_Data=False, aa_column_beta=1, count_column=2, v_beta_column=7, d_beta_column=14, j_beta_column=21) DTCR_SS.K_Fold_CrossVal(folds=5) #Train Repertoire Classifier folds = 100 LOO = 4 epochs_min = 10 size_of_net = 'small' num_concepts = 64 hinge_loss_t = 0.1 train_loss_min = 0.1 seeds = np.array(range(folds)) graph_seed = 0
matplotlib.rc('font', family='Arial') #Instantiate training object DTCRU = DeepTCR_SS('Murine_Sup') #Load Data # DTCRU.Get_Data(directory='../../Data/Murine_Antigens',Load_Prev_Data=False, # aa_column_beta=0,count_column=1,v_beta_column=2,j_beta_column=3, # classes=['Db-F2', 'Db-M45', 'Db-NP', 'Db-PA', 'Db-PB1']) # DTCRU.Monte_Carlo_CrossVal(folds=5) DTCR_inf = DeepTCR_SS('load') DTCR_inf.Get_Data(directory='../../Data/Murine_Antigens', Load_Prev_Data=False, aa_column_beta=0, count_column=1, v_beta_column=2, j_beta_column=3, classes=['Kb-M38', 'Kb-SIY', 'Kb-TRP2', 'Kb-m139']) beta_sequences = DTCR_inf.beta_sequences v_beta = DTCR_inf.v_beta j_beta = DTCR_inf.j_beta out = DTCRU.Sequence_Inference(beta_sequences=beta_sequences, v_beta=v_beta, j_beta=j_beta) out2 = DTCRU.Sequence_Inference(beta_sequences=beta_sequences, v_beta=v_beta, j_beta=j_beta)