def demand_forecasting(): request_data = request.args ip_address = request_data.get('ipAddress') df = DemandForecast() test_x = df.convert_data_by_ip_address(ip_address) if len(test_x) > 0: test_x = np.unique(test_x, axis=0) model_saved = keras.models.load_model('forecast_demand_model.h5') pred = model_saved.predict(test_x.reshape(len(test_x), len(test_x[0])), batch_size=1) return jsonify({"forecastResults": '{}'.format(pred)}) else: return 'no data'
def generate_chat_model(): chat_model = ChatBotModel() data_dump_model = DataBaseDump() data_dump_model.create_data_dump() data_dump_model.create_data_dump_ip_address() res = chat_model.generatechatmodel() demand_forecast = DemandForecast() demand_forecast.forecast_demand_model() demand_forecast.forecast_item_category_demand_model() demand_forecast.forecast_item_category_demand_model_without_user_id() demand_forecast.forecast_item_price_demand_model() demand_forecast.forecast_item_discount_demand_model() demand_forecast.forecast_order_quantity_demand_model() demand_forecast.forecast_order_total_amount_demand_model() demand_forecast.forecast_order_status_demand_model() return res
def item_category_demand_forecasting_by_userid_chat(): request_data = request.args user_id = request_data.get('userId') df = DemandForecast() test_x = df.convert_data_by_user_id_chat(user_id) if len(test_x) > 0: test_x = np.unique(test_x, axis=0) model_saved = keras.models.load_model( 'forecast_item_category_demand_model.h5') pred = model_saved.predict(test_x.reshape(len(test_x), len(test_x[0])), batch_size=1) print(pred) return jsonify({"forecastResults": '{}'.format(pred)}) else: return 'no data'
def get_recommend_cart_items(): query_parameters = request.args user_id = query_parameters.get('userId') df = DemandForecast() test_x = df.convert_data_by_user_id(user_id) if len(test_x) > 0: test_x = np.unique(test_x, axis=0) model_saved = keras.models.load_model('forecast_model.h5') prediction = model_saved.predict(test_x.reshape( len(test_x), len(test_x[0])), batch_size=1) prediction = json.dumps(prediction.tolist()) print(prediction) return jsonify({"forecastResults": '{}'.format(prediction)}) else: return 'no data'
from DemandForecasting import DemandForecast df = DemandForecast() df.forecast_item_category_demand_model()