def case_8(): '''Minimize Himmelblau's function.''' def f(variables): x, y = variables return (x**2 + y - 11)**2 + (x + y**2 - 7)**2 f_string = 'f(x, y) = (x^2 + y - 11)^2 + (x + y^2 - 7)^2' for x_val, y_val in [[5, 5]]: x0 = da.Var(x_val, [1, 0]) y0 = da.Var(y_val, [0, 1]) init_vars = [x0, y0] solution, xy_path, f_path = opt.GradientDescent(f, init_vars, iters=10000, eta=0.01) opt.plot_results(f, xy_path, f_path, f_string, threedim=True, hide=True) # Ensure that loss function is weakly decreasing _assert_decreasing(f_path) plt.close('all')
def case_7(): '''Minimize Easom's function.''' def f(variables): x, y = variables return -np.cos(x) * np.cos(y) * np.exp(-((x - np.pi)**2 + (y - np.pi)**2)) f_string = 'f(x, y) = -\cos(x)\cos(y)\exp(-((x-\pi)^2 + (y-\pi)^2))' for x_val, y_val in [[1.5, 1.75]]: x0 = da.Var(x_val, [1, 0]) y0 = da.Var(y_val, [0, 1]) init_vars = [x0, y0] solution, xy_path, f_path = opt.GradientDescent(f, init_vars, iters=10000, eta=0.3) opt.plot_results(f, xy_path, f_path, f_string, threedim=True, hide=True) # Ensure that loss function is weakly decreasing _assert_decreasing(f_path) plt.close('all')
def case_5(): '''Minimize bowl function: f(x, y) = x^2 + y^2 + 2. The global minimum is 2 when (x, y) = (0, 0). ''' def f(variables): x, y = variables return x**2 + y**2 + 2 f_string = 'f(x, y) = x^2 + y^2 + 2' for x_val, y_val in [[2., 3.], [-2., 5.]]: x0 = da.Var(x_val, [1, 0]) y0 = da.Var(y_val, [0, 1]) init_vars = [x0, y0] solution, xy_path, f_path = opt.GradientDescent(f, init_vars) xn, yn = solution.val opt.plot_results(f, xy_path, f_path, f_string, x_lims=(-7.5, 7.5), threedim=True, animate=True, hide=True) minimum = [0, 0] assert np.allclose([xn, yn], minimum) der = [0, 0] assert np.allclose(solution.der, der) plt.close('all')
def case_1(): '''Simple quadratic function with minimum at x = 0.''' def f(x): return x**2 f_string = 'f(x) = x^2' for x_val in [-4, -2, 0, 2, 4]: x0 = da.Var(x_val) solution, x_path, f_path = opt.GradientDescent(f, x0) opt.plot_results(f, x_path, f_path, f_string, hide=True) assert np.allclose(solution.val, [0]) assert np.allclose(solution.der, [0]) plt.close('all')
def case_2(): def f(x): return (x - 1)**2 + 3 f_string = 'f(x) = (x - 1)^2 + 3' for x_val in [-3, -1, 1, 3, 5]: # Test initial guess without using da.Var type solution, x_path, f_path = opt.GradientDescent(f, x_val) opt.plot_results(f, x_path, f_path, f_string, x_lims=(-3, 5), y_lims=(2, 10), animate=True, hide=True) assert np.allclose(solution.val, [1]) assert np.allclose(solution.der, [0]) plt.close('all')
def case_4(): '''Minimize Rosenbrock function: f(x, y) = 4(y - x^2)^2 + (1 - x)^2. The global minimum is 0 when (x, y) = (1, 1). ''' def f(variables): x, y = variables return 4 * (y - (x**2))**2 + (1 - x)**2 f_string = 'f(x, y) = 4(y - x^2)^2 + (1 - x)^2' for x_val, y_val in [[-6., -6], [2., 3.], [-2., 5.]]: x0 = da.Var(x_val, [1, 0]) y0 = da.Var(y_val, [0, 1]) init_vars = [x0, y0] solution, xy_path, f_path = opt.GradientDescent(f, init_vars, iters=25000, eta=0.002) xn, yn = solution.val opt.plot_results(f, xy_path, f_path, f_string, x_lims=(-7.5, 7.5), threedim=True, hide=True) minimum = [1, 1] assert np.allclose([xn, yn], minimum) # dfdx = 2(200x^3 - 200xy + x - 1) # dfdy = 200(y - x^2) der_x = 2 * (8 * (xn**3) - 8 * xn * yn + xn - 1) der_y = 8 * (yn - (xn**2)) assert np.allclose(solution.der, [der_x, der_y]) plt.close('all')
def case_3(): def f(x): return np.sin(x) f_string = 'f(x) = sin(x)' for x_val in [-3, -1, 1, 3]: # Test case when 1D input is a list x0 = [da.Var(x_val)] solution, x_path, f_path = opt.GradientDescent(f, x0) opt.plot_results(f, x_path, f_path, f_string, x_lims=(-2 * np.pi, 2 * np.pi), y_lims=(-1.5, 1.5), hide=True) multiple_of_three_halves_pi = (solution.val % (2 * np.pi)) np.testing.assert_array_almost_equal(multiple_of_three_halves_pi, 1.5 * np.pi) np.testing.assert_array_almost_equal(solution.der, [0]) plt.close('all')
def case_6(): '''Minimize cost function of ML regression demo. Note that we hardcode the dataset, since Travis CI does not recognize .txt files in the repository. ''' # Standardized dataset: number of bedrooms, number of bathrooms, price dataset = [ 0.1300098691, -0.2236751872, 399900.0000000000, -0.5041898382, -0.2236751872, 329900.0000000000, 0.5024763638, -0.2236751872, 369000.0000000000, -0.7357230647, -1.5377669118, 232000.0000000000, 1.2574760154, 1.0904165374, 539900.0000000000, -0.0197317285, 1.0904165374, 299900.0000000000, -0.5872397999, -0.2236751872, 314900.0000000000, -0.7218814044, -0.2236751872, 198999.0000000000, -0.7810230438, -0.2236751872, 212000.0000000000, -0.6375731100, -0.2236751872, 242500.0000000000, -0.0763567023, 1.0904165374, 239999.0000000000, -0.0008567372, -0.2236751872, 347000.0000000000, -0.1392733400, -0.2236751872, 329999.0000000000, 3.1172918237, 2.4045082621, 699900.0000000000, -0.9219563121, -0.2236751872, 259900.0000000000, 0.3766430886, 1.0904165374, 449900.0000000000, -0.8565230089, -1.5377669118, 299900.0000000000, -0.9622229602, -0.2236751872, 199900.0000000000, 0.7654679091, 1.0904165374, 499998.0000000000, 1.2964843307, 1.0904165374, 599000.0000000000, -0.2940482685, -0.2236751872, 252900.0000000000, -0.1417900055, -1.5377669118, 255000.0000000000, -0.4991565072, -0.2236751872, 242900.0000000000, -0.0486733818, 1.0904165374, 259900.0000000000, 2.3773921652, -0.2236751872, 573900.0000000000, -1.1333562145, -0.2236751872, 249900.0000000000, -0.6828730891, -0.2236751872, 464500.0000000000, 0.6610262907, -0.2236751872, 469000.0000000000, 0.2508098133, -0.2236751872, 475000.0000000000, 0.8007012262, -0.2236751872, 299900.0000000000, -0.2034483104, -1.5377669118, 349900.0000000000, -1.2591894898, -2.8518586364, 169900.0000000000, 0.0494765729, 1.0904165374, 314900.0000000000, 1.4298676025, -0.2236751872, 579900.0000000000, -0.2386816274, 1.0904165374, 285900.0000000000, -0.7092980769, -0.2236751872, 249900.0000000000, -0.9584479619, -0.2236751872, 229900.0000000000, 0.1652431861, 1.0904165374, 345000.0000000000, 2.7863503098, 1.0904165374, 549000.0000000000, 0.2029931687, 1.0904165374, 287000.0000000000, -0.4236565421, -1.5377669118, 368500.0000000000, 0.2986264579, -0.2236751872, 329900.0000000000, 0.7126179335, 1.0904165374, 314000.0000000000, -1.0075229393, -0.2236751872, 299000.0000000000, -1.4454227371, -1.5377669118, 179900.0000000000, -0.1870899846, 1.0904165374, 299900.0000000000, -1.0037479410, -0.2236751872, 239500.0000000000 ] dataset = np.reshape(dataset, [-1, 3]) dataset[:, 2] = dataset[:, 2] / 1000. f_string = 'f(w_0, w_1, w_2) = (1/2m)\sum_{i=0}^m (w_0 + w_1x_{i1} + w_2x_{i2} - y_i)^2' solution, w_path, f_path, f = opt.GradientDescent("mse", [0, 0, 0], data=dataset) opt.plot_results(f, w_path, f_path, f_string, x_lims=(-7.5, 7.5), fourdim=True, animate=True, hide=True) _assert_decreasing(f_path) plt.close('all')