예제 #1
0
import numpy as np

# Create a matrix will all elements as 1
from Display_Shape import display_shape

ones_matrix = np.ones((3, 3))
display_shape(ones_matrix)

# Create a matrix with all elements as 0
zeros_matrix = np.zeros((3, 3))
display_shape(zeros_matrix)

# Identity matrix
# k parameter  controls the index of 1
# if k =0, (0,0),(1,1,),(2,2) cell values
# are set to 1 in a 3 x 3 matrix
identity_matrix = np.eye(N=3, M=3, k=0)
display_shape(identity_matrix)
identity_matrix = np.eye(N=3, k=1)
display_shape(identity_matrix)
예제 #2
0
# Alternate ways of creating arrays
# 1. Leverage np.arange to create numpy array
import numpy as np

from Display_Shape import display_shape

created_array = np.arange(1, 10, dtype=float)
display_shape(created_array)

# 2. Using np.linspace to create numpy array
created_array = np.linspace(1, 10)
display_shape(created_array)

# 3. Create numpy arrays in using np.logspace
created_array = np.logspace(1, 10, base=10.0)
display_shape(created_array)

# Specify step size in arange while creating
# an array. This is where it is different
# from np.linspace
created_array = np.arange(1, 10, 2, dtype=int)
display_shape(created_array)
예제 #3
0
# Array shaping
from Display_Shape import display_shape
import numpy as np

a_matrix = np.arange(9).reshape(3, 3)
display_shape(a_matrix)

# Paramter -1 refers to as many as dimension needed
back_to_array = a_matrix.reshape(-1)
display_shape(back_to_array)

a_matrix = np.arange(9).reshape(3, 3)
back_array = np.ravel(a_matrix)
display_shape(back_array)

a_matrix = np.arange(9).reshape(3, 3)
back_array = a_matrix.flatten()
display_shape(back_array)
예제 #4
0
# Addition
c_matrix = a_matrix + b_matrix

# Element wise multiplication
d_matrix = a_matrix * b_matrix

# matrix multiplication
e_matrix = np.dot(a_matrix, b_matrix)

# matrix tranpsose
f_matrix = e_matrix.T

# min,max,sum
print
print "f_matrix,minimum = %d" % (f_matrix.min())
print "f_matrix,maximum = %d" % (f_matrix.max())
print "f_matrix, col sum", f_matrix.sum(axis=0)
print "f_matrix, row sum", f_matrix.sum(axis=1)

display_shape(f_matrix[::-1])

# Like python all elements are used by reference
# if copy is needed copy() command is used
f_copy = f_matrix.copy()

# Grid commands
xx, yy, zz = np.mgrid[0:3, 0:3, 0:3]
xx = xx.flatten()
yy = yy.flatten()
zz = zz.flatten()
예제 #5
0
import numpy as np

# Creating matrices
from Display_Shape import display_shape

a_listoflist = [[1, 2, 3], [5, 6, 7], [8, 9, 10]]
a_matrix = np.matrix(a_listoflist, dtype=float)
display_shape(a_matrix)