예제 #1
0
파일: MSLFQ_Test.py 프로젝트: bionicv/mslfq
    def setUp(self):

        # Set up environment
        actions = ["Drug_A", "Drug_B"]
        num_features = 2
        gamma = 0.99
        stages = 1
        self.env = DummyEnvironment(feature_size=num_features, stages=1, gamma=gamma, actions=actions)

        # set up data

        self.data = []
        s = [1, 1]
        a = "Drug_A"
        r = 1.0
        ns = [0, 0]

        self.data.append([0, s, a, r, ns])

        s = [1, 1]
        a = "Drug_B"
        r = 0.0
        ns = [0, 0]

        self.data.append([0, s, a, r, ns])

        self.learner = MSLFQ(stages=stages, gamma=gamma)
예제 #2
0
파일: MSLFQ_Test.py 프로젝트: bionicv/mslfq
class Test(unittest.TestCase):
    def setUp(self):

        # Set up environment
        actions = ["Drug_A", "Drug_B"]
        num_features = 2
        gamma = 0.99
        stages = 1
        self.env = DummyEnvironment(feature_size=num_features, stages=1, gamma=gamma, actions=actions)

        # set up data

        self.data = []
        s = [1, 1]
        a = "Drug_A"
        r = 1.0
        ns = [0, 0]

        self.data.append([0, s, a, r, ns])

        s = [1, 1]
        a = "Drug_B"
        r = 0.0
        ns = [0, 0]

        self.data.append([0, s, a, r, ns])

        self.learner = MSLFQ(stages=stages, gamma=gamma)

    def testDummyEnvironment(self):
        state = [1.0, 1.0]
        action = "Drug_A"
        stage = 1
        features = self.env.phi(stage, state, action)

        result_list = [1.0, 1.0, 1.0, 0, 0, 0]
        self.assertListEqual(list(features), result_list)

        action = "Drug_B"
        result_list = [0, 0, 0, 1.0, 1.0, 1.0]
        features = self.env.phi(stage, state, action)
        self.assertListEqual(list(features), result_list)

    def testProcessDataFit(self):
        self.learner.process_data(self.data, self.env)

        n_data = self.learner.data_

        result_list = [1.0, 1.0, 1.0, 0, 0, 0]

        features = n_data[0][0]
        target = n_data[0][1]

        self.assertListEqual(list(features[0]), result_list)
        self.assertEqual(target[0], 1.0)

        result_list = [0, 0, 0, 1.0, 1.0, 1.0]
        self.assertListEqual(list(features[1]), result_list)
        self.assertEqual(target[1], 0.0)

        weights = self.learner.fit(features, target)

        self.assertEqual(np.sign(weights[0]), 1)
        self.assertEqual(np.sign(weights[3]), -1)

    def testLongFit(self):
        weights = self.learner.fit_data(self.data, self.env)

        self.assertEqual(len(weights), 1)
        self.assertEqual(len(weights[0]), 6)

    def testMultiStage(self):
        # set up data
        stages = 2
        data = []
        s = [1, 1]
        a = "Drug_A"
        r = 1.0
        ns = [1, 1]

        data.append([1, s, a, r, ns])
        a = "Drug_B"
        r = 0.0
        ns = [1, 1]
        data.append([1, s, a, r, ns])

        s = [0, 0]
        a = "Drug_B"
        r = 0.0
        ns = [1, 1]

        data.append([0, s, a, r, ns])
        a = "Drug_A"
        r = 0.0
        ns = [0, 0]
        data.append([0, s, a, r, ns])
        learner = MSLFQ(stages=stages, gamma=1.0)

        weights = learner.fit_data(data, self.env)
        self.assertEqual(len(weights), 2)
        self.assertEqual(len(weights[0]), 6)

        print weights