n_hidden = 50 max_iter = 1000 train_index, test_index = p.get_tr_tx_index(y, test_size=0.4) results = [] X_proj = [] for rho in np.arange(0.1, 1, 0.1): start = time.clock() instance_emo_elm = EMO_AE_ELM(n_hidden, sparse_degree=rho, max_iter=max_iter, n_pop=100) X_projection_emo_elm = instance_emo_elm.fit(X, X).predict(X) # instance_emo_elm.save_evo_result('./experimental_results/EMO-ELM-AE-results-KSC-50hidden.npz') time_emo_elmae = round(time.clock() - start, 3) X_proj.append(X_projection_emo_elm) # TODO: calculate accuracy X_train, X_test = X_projection_emo_elm[train_index], X_projection_emo_elm[ test_index] # [index] y_train, y_test = y[train_index], y[test_index] elm = BaseELM(500, C=1e8) y_predicted = elm.fit(X_train, y_train).predict(X_test) acc = accuracy_score(y_test, y_predicted) acc_ = round(acc * 100, 2) results.append(acc_) print('rho:', rho, ' acc:', acc_) np.savez( 'F:\Python\EMO_ELM\demo\experimental_results\SalinasA-1000iter-50hidden-sparsity_acc_X_proj_differ-rho.npz', X=np.asarray(X_proj), acc=np.asarray(results))
time_elmae, time_selmae, # time_ae, time_sae, # time_emo_elmae ] # NMSE_list = [Helper.calculate_NMSE(X, X_) for X_ in X_projection_list] print('------------------------------------') print('time:', time_list) print('------------------------------------') classifiers = [ KNeighborsClassifier(3), #SVC(kernel="linear", C=1e4), LinearSVC(), DecisionTreeClassifier(max_depth=5), BaseELM(500, C=1e5), GaussianNB() ] # baseline_names = ['RP', 'PCA', 'SPCA', 'NMF', 'ELM-AE', 'SELM-AE', 'AE', 'SAE', 'EMO-ELM-AE'] baseline_names = [ 'RP', 'SPCA', 'ELM-AE', 'SELM-AE', 'AE', 'SAE', 'EMO_ELM_f1', 'EMO_ELM_f2', 'EMO_ELM_best' ] classifier_names = ['KNN', 'SVM', 'DT', 'ELM', 'NB'] # results = {} results = [] for i in range(X_projection_list.__len__()): print('---------------------------------') # print('baseline: ', baseline_names[i]) X_ = X_projection_list[i]