print( " - Plotting the cumulative rewards, and saving the plot to {} ..." .format(savefig)) savefig = mainfig evaluation.plotRegrets(envId, savefig=savefig, moreAccurate=True) # XXX To save the figure savefig = mainfig.replace('main', 'main_LessAccurate') evaluation.plotRegrets( envId, savefig=savefig, moreAccurate=False) # XXX To save the figure savefig = mainfig.replace('main', 'main_BestArmPulls') print( " - Plotting the probability of picking the best arm, and saving the plot to {} ..." .format(savefig)) # --- Also plotting the probability of picking the best arm evaluation.plotBestArmPulls( envId, savefig=savefig) # XXX To save the figure # if configuration['horizon'] >= 1000: # savefig = mainfig.replace('main', 'main_semilogx') # evaluation.plotRegrets(envId, savefig=savefig, semilogx=True) # XXX To save the figure savefig = mainfig.replace('main', 'main_semilogy') evaluation.plotRegrets(envId, savefig=savefig, semilogy=True) # XXX To save the figure if configuration['horizon'] >= 1000: savefig = mainfig.replace('main', 'main_loglog') evaluation.plotRegrets(envId, savefig=savefig, loglog=True) # XXX To save the figure if configuration['repetitions'] > 1: if plotSTD: savefig = savefig.replace('main', 'main_STD') evaluation.plotRegrets( envId,
evaluation.printLastRegrets(envId) print("\nGiving the final ranking ...") evaluation.printFinalRanking(envId) print("\n\n- Plotting the last regrets...") evaluation.plotLastRegrets(envId, boxplot=True) print("\nGiving the mean and std running times ...") evaluation.printRunningTimes(envId) evaluation.plotRunningTimes(envId) print("\nGiving the mean and std running times ...") evaluation.printMemoryConsumption(envId) evaluation.plotMemoryConsumption(envId) print("\n\n- Plotting the mean reward...") evaluation.plotRegrets(envId, meanReward=True) print("\n\n- Plotting the regret...") evaluation.plotRegrets(envId) print("\n- Plotting the probability of picking the best arm of time...") evaluation.plotBestArmPulls(envId) print("\n- Plotting the histograms of regrets...") evaluation.plotLastRegrets(envId, sharex=True, sharey=True) # Done print("Done for simulations example_of_main_singleplayer ...") notify("Done for simulations example_of_main_singleplayer ...")