def read_attributes(path): print("Reading execution attributes from ", path) attr = ExecutionAttribute() lines = [line.rstrip('\n') for line in open(path)] attr.seq = int(lines[0].split("=", 1)[1]) attr.img_width = int(lines[1].split("=", 1)[1]) attr.img_height = int(lines[2].split("=", 1)[1]) attr.path = lines[3].split("=", 1)[1] attr.summ_basename = lines[4].split("=", 1)[1] attr.epochs = int(lines[5].split("=", 1)[1]) attr.batch_size = int(lines[6].split("=", 1)[1]) attr.train_data_dir = lines[7].split("=", 1)[1] attr.validation_data_dir = lines[8].split("=", 1)[1] attr.test_data_dir = lines[9].split("=", 1)[1] attr.steps_train = int(lines[10].split("=", 1)[1]) attr.steps_valid = int(lines[11].split("=", 1)[1]) attr.steps_test = int(lines[12].split("=", 1)[1]) attr.architecture = lines[13].split("=", 1)[1] attr.curr_basename = lines[14].split("=", 1)[1] return attr
# # Execution Attributes attr = ExecutionAttribute() # dimensions of our images. attr.img_width, attr.img_height = 96, 96 # network parameters # attr.path='C:/Users/hp/Downloads/cars_train' # attr.path='/home/amenegotto/dataset/2d/sem_pre_proc_mini/ attr.path = '/mnt/data/image/2d/com_pre_proc/' attr.summ_basename = get_base_name(SUMMARY_BASEPATH) attr.s3_path = NETWORK_FORMAT + '/' + IMAGE_FORMAT attr.epochs = 100 attr.batch_size = 128 attr.set_dir_names() if K.image_data_format() == 'channels_first': input_s = (3, attr.img_width, attr.img_height) else: input_s = (attr.img_width, attr.img_height, 3) for i in range(0, CYCLES): # define model attr.model = Sequential() attr.model.add(Conv2D(128, (3, 3), input_shape=input_s, kernel_initializer='he_normal', kernel_regularizer=regularizers.l2(0.0005))) attr.model.add(BatchNormalization()) attr.model.add(Activation('relu')) attr.model.add(Dropout(0.25)) attr.model.add(Conv2D(128, (3, 3), input_shape=input_s, kernel_initializer='he_normal', kernel_regularizer=regularizers.l2(0.0005)))
# Execution Attributes attr = ExecutionAttribute() # dimensions of our images. attr.img_width, attr.img_height = 96, 96 # network parameters attr.csv_path = 'csv/clinical_data.csv' attr.path = '/mnt/data/image/2d/' + IMG_TYPE # attr.path = '/home/amenegotto/dataset/2d/' + IMG_TYPE attr.numpy_path = '/mnt/data/image/2d/numpy/' + IMG_TYPE # attr.numpy_path = '/home/amenegotto/dataset/2d/numpy/' + IMG_TYPE attr.summ_basename = get_base_name(SUMMARY_BASEPATH) attr.epochs = 2 attr.batch_size = 32 attr.set_dir_names() if K.image_data_format() == 'channels_first': input_image_s = (3, attr.img_width, attr.img_height) else: input_image_s = (attr.img_width, attr.img_height, 3) input_attributes_s = (20,) for i in range(0, CYCLES): # define model # image input visible = Input(shape=input_image_s)
NETWORK_FORMAT = "Unimodal" IMAGE_FORMAT = "2D" SUMMARY_BASEPATH = create_results_dir(SUMMARY_PATH, NETWORK_FORMAT, IMAGE_FORMAT) # Execution Attributes attr = ExecutionAttribute() attr.architecture = 'InceptionV3' results_path = create_results_dir(SUMMARY_BASEPATH, 'fine-tuning', attr.architecture) attr.summ_basename = get_base_name(results_path) attr.s3_path = NETWORK_FORMAT + '/' + IMAGE_FORMAT attr.path = '/mnt/data/image/2d/sem_pre_proc' attr.set_dir_names() attr.batch_size = 128 # try 4, 8, 16, 32, 64, 128, 256 dependent on CPU/GPU memory capacity (powers of 2 values). attr.epochs = 500 # how many times to execute the training/validation/test cycle CYCLES = 1 for i in range(0, CYCLES): # create the base pre-trained model base_model = InceptionV3(weights='imagenet', include_top=False) # dimensions of our images. # Inception input size attr.img_width, attr.img_height = 299, 299 # add a global spatial average pooling layer