def modify_config(self, config: FaceGroupingConfig, i): if i < self.num_runs / 2: config.dataset = self.bf else: config.dataset = self.bbt return super().modify_config(config, i)
def modify_config(self, config: FaceGroupingConfig, i): if i < 6: config.dataset = BigBangTheory(episode_index_test=i) else: config.dataset = Buffy(episode_index_test=i - 6) return super().modify_config(config, i)
def modify_config(self, config: FaceGroupingConfig, i): from FGG.dataset.split_strategy import SplitEveryXFrames x = 10 config.graph_builder_params["split_strategy"] = SplitEveryXFrames(x=x) config.pool_before_clustering = True config.dataset = Buffy(episode_index_val=None, episode_index_train=None, episode_index_test=i) return (str(x), *super().modify_config(config, i))
def modify_config(self, config: FaceGroupingConfig, i): config.dataset = self.accio config.model_params["sparse_adjacency"] = True return (str(self.num_clusters), *super().modify_config(config, i))
def modify_config(self, config: FaceGroupingConfig, i): config.dataset = self.bf return super().create_model_name(config, i)
def modify_config(self, config: FaceGroupingConfig, i): config.dataset = self.dataset return super().modify_config(config, i)
def modify_config(self, config: FaceGroupingConfig, i): config.dataset = Buffy(episode_index_test=i) return super().modify_config(config, i)
def modify_config(self, config: FaceGroupingConfig, i): config.dataset = Accio() config.model_params["sparse_adjacency"] = True return super().modify_config(config, i)