def __init__(self, state_size, action_size, seed, memory_type): # keep params self.state_size = state_size self.action_size = action_size self.seed = random.seed(seed) # Create local and target network self.qnn_local = QNetwork(state_size, action_size, seed, fc1_units=74, fc2_units=74).to(device) self.qnn_target = QNetwork(state_size, action_size, seed, fc1_units=74, fc2_units=74).to(device) # Init optimizer self.optimizer = optim.Adam(self.qnn_local.parameters(), lr=LR) # Replay Memory if memory_type == 0: print("Using FifoMemory...") self.memory = FifoMemory(BUFFER_SIZE) else: print("Using simple DequeMemory...") self.memory = DequeMemory(action_size, BUFFER_SIZE, BATCH_SIZE, seed) self.t_step = 0
def __init__(self, state_size, action_size, random_seed): """Initialize an Agent object. Params ====== state_size (int): dimension of each state action_size (int): dimension of each action random_seed (int): random seed """ # Store parameters self.state_size = state_size self.action_size = action_size self.seed = random.seed(random_seed) self.epsilon = EPSILON # Actor Network (w/ Target Network) self.actor_local = Actor(state_size, action_size, random_seed).to(device) self.actor_target = Actor(state_size, action_size, random_seed).to(device) self.actor_optimizer = optim.Adam(self.actor_local.parameters(), lr=LR_ACTOR) # Critic Network (w/ Target Network) self.critic_local = Critic(state_size, action_size, random_seed).to(device) self.critic_target = Critic(state_size, action_size, random_seed).to(device) self.critic_optimizer = optim.Adam(self.critic_local.parameters(), lr=LR_CRITIC, weight_decay=WEIGHT_DECAY) # Noise process self.noise = OUNoise(action_size, random_seed) # Replay memory self.memory = FifoMemory(BUFFER_SIZE, BATCH_SIZE) # Short term memory contains only 1/100 of the complete memory and the most recent samples self.memory_short = FifoMemory(int(BUFFER_SIZE / 100), int(BATCH_SIZE))
def __init__(self, state_size, action_size, random_seed=1): """Initialize an Agent object. Params ====== state_size (int): dimension of each state action_size (int): dimension of each action random_seed (int): random seed """ # Store parameters self.state_size = state_size self.action_size = action_size self.seed = random.seed(random_seed) self.epsilon = EPSILON self.lr_actor = LR_ACTOR self.lr_critic = LR_CRITIC self.lr_decay = WEIGHT_DECAY # Actor Network (w/ Target Network) self.actor_local = Actor(state_size, action_size, random_seed).to(device) self.actor_target = Actor(state_size, action_size, random_seed).to(device) self.actor_optimizer = optim.Adam(self.actor_local.parameters(), lr=self.lr_actor) # Critic Network (w/ Target Network) self.critic_local = Critic(state_size, action_size, random_seed).to(device) self.critic_target = Critic(state_size, action_size, random_seed).to(device) self.critic_optimizer = optim.Adam(self.critic_local.parameters(), lr=self.lr_critic) # Noise process self.noise = OUNoise(action_size, random_seed) # Replay memory self.memory = FifoMemory(BUFFER_SIZE, BATCH_SIZE) # Success memory contains only the last 10 samples which led to a positive reward self.memory_success = FifoMemory(int(BUFFER_SIZE), int(BATCH_SIZE)) # Rolling sample memory of last 10 samples self.memory_short = FifoMemory(10, 10)
class AgentTD3(): """Interacts with and learns from the environment.""" def __init__(self, state_size, action_size, random_seed): """Initialize an Agent object. Params ====== state_size (int): dimension of each state action_size (int): dimension of each action random_seed (int): random seed """ # Store parameters self.state_size = state_size self.action_size = action_size self.seed = random.seed(random_seed) self.epsilon = EPSILON # Actor Network (w/ Target Network) self.actor_local = Actor(state_size, action_size, random_seed).to(device) self.actor_target = Actor(state_size, action_size, random_seed).to(device) self.actor_optimizer = optim.Adam(self.actor_local.parameters(), lr=LR_ACTOR) # Critic Network (w/ Target Network) self.critic_local = Critic(state_size, action_size, random_seed).to(device) self.critic_target = Critic(state_size, action_size, random_seed).to(device) self.critic_optimizer = optim.Adam(self.critic_local.parameters(), lr=LR_CRITIC, weight_decay=WEIGHT_DECAY) # Noise process self.noise = OUNoise(action_size, random_seed) # Replay memory self.memory = FifoMemory(BUFFER_SIZE, BATCH_SIZE) # Short term memory contains only 1/100 of the complete memory and the most recent samples self.memory_short = FifoMemory(int(BUFFER_SIZE / 100), int(BATCH_SIZE)) def step(self, state, action, reward, next_state, done, timestep): """Save experience in replay memory, and use random sample from buffer to learn.""" # Save experience / reward self.memory.add(state, action, reward, next_state, done) self.memory_short.add(state, action, reward, next_state, done) # Learn at defined interval, if enough samples are available in memory # HINT from Udacity "benchmark": learn every 20 timesteps and train 10 samples if len(self.memory) > BATCH_SIZE and timestep % LEARN_EVERY == 0: for _ in range(LEARN_NUM): experiences = self.memory.sample() experiences_short = self.memory_short.sample() # delay update of the policy and only update every 2nd training self.learn(experiences_short, timestep % 2, GAMMA) self.learn(experiences, timestep % 2, GAMMA) def act(self, state, add_noise=True): """Returns actions for given state as per current policy.""" state = torch.from_numpy(state).float().to(device) self.actor_local.eval() with torch.no_grad(): action = self.actor_local(state).cpu().data.numpy() self.actor_local.train() # TD3 --> Action noise regularisation if add_noise: action += self.epsilon * self.noise.sample() # The range of noise is clipped in order to keep the target value # close to the original action. clipped_action = np.clip(action, -1, 1) return clipped_action def reset(self): self.noise.reset() def learn(self, experiences, delay, gamma): """Update policy and value parameters using given batch of experience tuples. Q_targets = r + γ * critic_target(next_state, actor_target(next_state)) where: actor_target(state) -> action critic_target(state, action) -> Q-value Params ====== experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples gamma (float): discount factor """ states, actions, rewards, next_states, dones = experiences # ---------------------------- update critic ---------------------------- # # TD3 --> Using a pair of critic networks (The twin part of the title) # Get predicted next-state actions and Q values from target models actions_next = self.actor_target(next_states) Q_targets_next1, Q_targets_next2 = self.critic_target( next_states, actions_next) # TD3 --> Take the minimum of both critic in order to avoid overestimation Q_targets_next = torch.min(Q_targets_next1, Q_targets_next2) # Compute Q targets for current states (y_i) Q_targets = rewards + (gamma * Q_targets_next * (1 - dones)) # Compute critic loss Q_expected1, Q_expected2 = self.critic_local(states, actions) # compute critic loss [HOW MUCH OFF?] as sum of both loss from target critic_loss = F.mse_loss(Q_expected1, Q_targets) + F.mse_loss( Q_expected2, Q_targets) # minimize loss [TRAIN] self.critic_optimizer.zero_grad() critic_loss.backward() torch.nn.utils.clip_grad_norm_(self.critic_local.parameters(), 1) self.critic_optimizer.step() # ---------------------------- update actor ---------------------------- # # TD3 --> Delayed updates of the actor = policy (The delayed part) # Compute actor loss if delay == 0: actions_pred = self.actor_local(states) # compute loss [HOW MUCH OFF?] actor_loss = -self.critic_local.Q1(states, actions_pred).mean() # minimize loss [TRAIN] self.actor_optimizer.zero_grad() actor_loss.backward() self.actor_optimizer.step() # ----------------------- update target networks ----------------------- # self.soft_update(self.critic_local, self.critic_target, TAU) self.soft_update(self.actor_local, self.actor_target, TAU) # ---------------------------- update noise ---------------------------- # self.epsilon -= EPSILON_DECAY self.noise.reset() def soft_update(self, local_model, target_model, tau): """Soft update model parameters. θ_target = τ*θ_local + (1 - τ)*θ_target Params ====== local_model: PyTorch model (weights will be copied from) target_model: PyTorch model (weights will be copied to) tau (float): interpolation parameter """ for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data)
class TD3Agent(): """Interacts with and learns from the environment.""" def __init__(self, state_size, action_size, random_seed=1): """Initialize an Agent object. Params ====== state_size (int): dimension of each state action_size (int): dimension of each action random_seed (int): random seed """ # Store parameters self.state_size = state_size self.action_size = action_size self.seed = random.seed(random_seed) self.epsilon = EPSILON self.lr_actor = LR_ACTOR self.lr_critic = LR_CRITIC self.lr_decay = WEIGHT_DECAY # Actor Network (w/ Target Network) self.actor_local = Actor(state_size, action_size, random_seed).to(device) self.actor_target = Actor(state_size, action_size, random_seed).to(device) self.actor_optimizer = optim.Adam(self.actor_local.parameters(), lr=self.lr_actor) # Critic Network (w/ Target Network) self.critic_local = Critic(state_size, action_size, random_seed).to(device) self.critic_target = Critic(state_size, action_size, random_seed).to(device) self.critic_optimizer = optim.Adam(self.critic_local.parameters(), lr=self.lr_critic) # Noise process self.noise = OUNoise(action_size, random_seed) # Replay memory self.memory = FifoMemory(BUFFER_SIZE, BATCH_SIZE) # Success memory contains only the last 10 samples which led to a positive reward self.memory_success = FifoMemory(int(BUFFER_SIZE), int(BATCH_SIZE)) # Rolling sample memory of last 10 samples self.memory_short = FifoMemory(10, 10) def update_model(self, state, action, reward, next_state, done): self.step(state, action, reward, next_state, done) def step(self, state, action, reward, next_state, done): """Save experience in replay memory, and use random sample from buffer to learn.""" reached = True if len(self.memory_success) < BATCH_SIZE: reached = False self.memory.add(state, action, reward, next_state, done) self.memory_short.add(state, action, reward, next_state, done) # Fill the success memory in case this agents receives positive reward if reward > 0.0: for i in range(len(self.memory_short)): self.memory_success.add( self.memory_short.samples[i].state, \ self.memory_short.samples[i].action, \ self.memory_short.samples[i].reward, \ self.memory_short.samples[i].next_state, \ self.memory_short.samples[i].done) self.memory_short.clear() if reached == False and len(self.memory_success) > BATCH_SIZE: print("Success memory ready for use!") # Train with the complete replay memory if len(self.memory) > BATCH_SIZE: for i in range(LEARN_NUM_MEMORY): experiences = self.memory.sample() # delay update of the policy and only update every 2nd training self.learn(experiences, 0 , GAMMA) # Train with the success replay memory if (len(self.memory_success) > self.memory_success.batch_size): for i in range(LEARN_NUM_MEMORY_SUCCESS): experiences_success = self.memory_success.sample() self.learn(experiences_success, 0 ,GAMMA) def act(self, state, add_noise=True): """Returns actions for given state as per current policy.""" state = torch.from_numpy(state).float().to(device) self.actor_local.eval() with torch.no_grad(): action = self.actor_local(state).cpu().data.numpy() self.actor_local.train() # TD3 --> Action noise regularisation if add_noise: action += self.epsilon * self.noise.sample() # The range of noise is clipped in order to keep the target value # close to the original action. clipped_action = np.clip(action, -1, 1) self.epsilon *= EPSILON_DECAY return clipped_action def reset(self): self.noise.reset() def learn(self, experiences, delay ,gamma): """Update policy and value parameters using given batch of experience tuples. Q_targets = r + γ * critic_target(next_state, actor_target(next_state)) where: actor_target(state) -> action critic_target(state, action) -> Q-value Params ====== experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples gamma (float): discount factor """ states, actions, rewards, next_states, dones = experiences # ---------------------------- update critic ---------------------------- # # TD3 --> Using a pair of critic networks (The twin part of the title) # Get predicted next-state actions and Q values from target models actions_next = self.actor_target(next_states) Q_targets_next1, Q_targets_next2 = self.critic_target(next_states, actions_next) # TD3 --> Take the minimum of both critic in order to avoid overestimation #Q_targets_next = torch.min(Q_targets_next1, Q_targets_next2) Q_targets_next = Q_targets_next1 # Compute Q targets for current states (y_i) Q_targets = rewards + (gamma * Q_targets_next * (1 - dones)) # Compute critic loss Q_expected1, Q_expected2 = self.critic_local(states, actions) # compute critic loss [HOW MUCH OFF?] as sum of both loss from target #critic_loss = F.mse_loss(Q_expected1, Q_targets)+F.mse_loss(Q_expected2, Q_targets) critic_loss = F.mse_loss(Q_expected1, Q_targets) # minimize loss [TRAIN] self.critic_optimizer.zero_grad() critic_loss.backward() torch.nn.utils.clip_grad_norm_(self.critic_local.parameters(), 1) self.critic_optimizer.step() # ---------------------------- update actor ---------------------------- # # TD3 --> Delayed updates of the actor = policy (The delayed part) # Compute actor loss if delay == 0: actions_pred = self.actor_local(states) # compute loss [HOW MUCH OFF?] actor_loss = -self.critic_local.Q1(states, actions_pred).mean() # minimize loss [TRAIN] self.actor_optimizer.zero_grad() actor_loss.backward() self.actor_optimizer.step() # ----------------------- update target networks ----------------------- # self.soft_update(self.critic_local, self.critic_target, TAU) self.soft_update(self.actor_local, self.actor_target, TAU) # ---------------------------- update noise ---------------------------- # self.noise.reset() def soft_update(self, local_model, target_model, tau): """Soft update model parameters. θ_target = τ*θ_local + (1 - τ)*θ_target Params ====== local_model: PyTorch model (weights will be copied from) target_model: PyTorch model (weights will be copied to) tau (float): interpolation parameter """ for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)