fitga.refine(far) far.residual = [] far.volume = [] far.mean_ia = [] for i in range(far.no_grains): far.residual.append([]) far.volume.append([]) far.mean_ia.append([]) for j in range(far.nrefl[i]): far.residual[i].append(1) far.volume[i].append(1) far.mean_ia[i].append(1) from FitAllB import reject reject.residual(far, far.fit['rej_resmedian']) reject.mean_ia(far, far.fit['rej_ia'] * float(k + 2) / float(k + 1)) reject.intensity(far) from FitAllB import write_output write_output.write_rej(far, message='globals%i' % k) for i in range(far.no_grains): if far.nrefl[i] < far.fit['min_refl'] and i + 1 not in far.fit['skip']: far.fit['skip'].append(i + 1) far.fit['skip'].sort() # optional nearfield info if far.files['near_flt_file'] != None: assert far.files[ 'near_par_file'] != None, 'near_par_file parameter file for near-field detector is missing' near = deepcopy(far) # take special care of near-field keywords (eg copy near_dety_size to dety_size) for key in list(near.fit.keys()):
def run(options): if options.filename == None: #parser.print_help() print "\nNo input file supplied [-i filename]\n" sys.exit() #Read and check input far = check_input.parse_input( input_file=options.filename) # Make instance of parse_input class far.read() # read input file far.check() # check validity of input if far.missing == True: # if problem exit logging.info('MISSING ITEMS') sys.exit() far.initialize() # if ok initialize # mandatory farfield info far.read_par(far.files['par_file']) # read detector.par file far.read_res( ) # read paramters file to resume refinement NB! optional far.read_flt(far.files['flt_file']) # read peaks_t##.flt file if far.files['res_file'] == None: far.read_log() # read grainspotter.log file far.read_rej( far.files['rej_file'] ) # read file containing rejected peaks to resume refinement NB! optional far.set_start() # set values and errors for refinement start check_input.set_globals(far) #for key in far.param.keys(): # print key,far.param[key] # Farfield outlier rejection if far.files['res_file'] != None and far.labels == None: from FitAllB import near_field near_field.find_refl(far) near_field.match(far) far.read_rej( far.files['rej_file'] ) # read file containing rejected peaks to resume refinement NB! optional from FitAllB import error error.vars(far) from FitAllB import build_fcn build_fcn.FCN(far) far.reject() far.write_rej() # farfield refinement for k in range(far.fit['cycle']): #while len(far.fit['newreject_grain']) > 0: # refine grain paramters far.fit['reforder'] = ['start%s' % k, 'rotpos%s' % k, 'end'] far.fit['goon'] = far.fit['reforder'][0] if k == 0: #start with globals in stead of grain refinement far.fit['reforder'] = ['start%s' % k, 'end'] far.fit['newreject_grain'] = range(far.no_grains + 1) from FitAllB import fit fit.refine(far) # refine globals far.fit['reforder'] = ['globals%s' % k, 'end'] far.fit['goon'] = far.fit['reforder'][0] from FitAllB import fitga fitga.refine(far) far.residual = [] far.volume = [] far.mean_ia = [] for i in range(far.no_grains): far.residual.append([]) far.volume.append([]) far.mean_ia.append([]) for j in range(far.nrefl[i]): far.residual[i].append(1) far.volume[i].append(1) far.mean_ia[i].append(1) from FitAllB import reject reject.residual(far, far.fit['rej_resmedian']) reject.mean_ia(far, far.fit['rej_ia'] * float(k + 2) / float(k + 1)) reject.intensity(far) from FitAllB import write_output write_output.write_rej(far, message='globals%i' % k) for i in range(far.no_grains): if far.nrefl[i] < far.fit['min_refl'] and i + 1 not in far.fit[ 'skip']: far.fit['skip'].append(i + 1) far.fit['skip'].sort() # optional nearfield info if far.files['near_flt_file'] != None: assert far.files[ 'near_par_file'] != None, 'near_par_file parameter file for near-field detector is missing' near = deepcopy(far) # take special care of near-field keywords (eg copy near_dety_size to dety_size) for key in near.fit.keys(): if key[0:5] == 'near_': near.fit[key[5:len(key)]] = near.fit[key] near.fit['stem'] = far.fit['stem'] + '_near' near.read_par(near.files['near_par_file']) near.read_flt(near.files['near_flt_file']) keys = [ 'cell__a', 'cell__b', 'cell__c', 'cell_alpha', 'cell_beta', 'cell_gamma', 'cell_lattice_[P,A,B,C,I,F,R]', 'chi', 'omegasign', 'wavelength' ] for key in keys: assert near.param[key] == far.param[ key], '%s is different for near- and far-field detectors' % key # in case of different wedge use farfield value and refine if near.param['wedge'] != far.param['wedge']: near.param['wedge'] = far.param['wedge'] near.values = far.values near.errors = far.errors near.fit['skip'] = far.fit['skip'] check_input.set_globals(near) # match peaks on nearfield detector and reject outliers from FitAllB import near_field near_field.find_refl(near) near_field.match(near) from FitAllB import error error.vars(near) from FitAllB import build_fcn build_fcn.FCN(near) near.reject() near.write_rej() # nearfield refinement for k in range(near.fit['cycle']): # refine grain paramters near.fit['reforder'] = ['start%s' % k, 'rotpos%s' % k, 'end'] near.fit['goon'] = near.fit['reforder'][0] near.fit['newreject_grain'] = range(near.no_grains + 1) from FitAllB import fit fit.refine(near) # refine globals near.fit['reforder'] = ['globals%s' % k, 'end'] near.fit['goon'] = near.fit['reforder'][0] from FitAllB import fitga fitga.refine(near) near.residual = [] near.volume = [] near.mean_ia = [] for i in range(near.no_grains): near.residual.append([]) near.volume.append([]) near.mean_ia.append([]) for j in range(near.nrefl[i]): near.residual[i].append(1) near.volume[i].append(1) near.mean_ia[i].append(1) from FitAllB import reject reject.residual(near, near.fit['rej_resmedian']) reject.mean_ia(near, near.fit['rej_ia'] * float(k + 2) / float(k + 1)) reject.intensity(near) from FitAllB import write_output write_output.write_rej(near, message='globals%i' % k) for i in range(near.no_grains): if near.nrefl[i] < near.fit[ 'min_refl'] and i + 1 not in near.fit['skip']: near.fit['skip'].append(i + 1) near.fit['skip'].sort() # program ends here after deleting fcn.py and fcn.pyc print '\nNormal termination of FitGlobAll' os.remove('%s/fcn.py' % far.fit['direc']) os.remove('%s/fcn.pyc' % far.fit['direc'])