def fun_UEqn(mesh, U, p_rgh, ghf, rho, rhoPhi, turbulence, twoPhaseProperties, momentumPredictor, finalIter): from Foam.OpenFOAM import word from Foam.finiteVolume import surfaceScalarField from Foam import fvc muEff = surfaceScalarField(word("muEff"), twoPhaseProperties.muf() + fvc.interpolate(rho * turbulence.ext_nut())) from Foam import fvm, fvc UEqn = fvm.ddt(rho, U) + fvm.div(rhoPhi, U) - fvm.laplacian(muEff, U) - (fvc.grad(U) & fvc.grad(muEff)) if finalIter: UEqn.relax(1.0) pass else: UEqn.relax() pass if momentumPredictor: from Foam.finiteVolume import solve solve( UEqn == fvc.reconstruct((-ghf * fvc.snGrad(rho) - fvc.snGrad(p_rgh)) * mesh.magSf()), mesh.solver(U.select(finalIter)), ) pass return UEqn
def _UEqn(mesh, alpha1, U, p, rho, rhoPhi, turbulence, g, twoPhaseProperties, interface, momentumPredictor): from Foam.OpenFOAM import word from Foam.finiteVolume import surfaceScalarField from Foam import fvc muEff = surfaceScalarField(word("muEff"), twoPhaseProperties.muf() + fvc.interpolate(rho * turbulence.ext_nut())) from Foam import fvm UEqn = fvm.ddt(rho, U) + fvm.div(rhoPhi, U) - fvm.laplacian(muEff, U) - (fvc.grad(U) & fvc.grad(muEff)) UEqn.relax() if momentumPredictor: from Foam.finiteVolume import solve solve( UEqn == fvc.reconstruct( fvc.interpolate(rho) * (g & mesh.Sf()) + (fvc.interpolate(interface.sigmaK()) * fvc.snGrad(alpha1) - fvc.snGrad(p)) * mesh.magSf() ) ) pass return UEqn
def main_standalone( argc, argv ): from Foam.OpenFOAM import argList, word argList.validOptions.fget().insert( word( "writep" ), "" ) from Foam.OpenFOAM.include import setRootCase args = setRootCase( argc, argv ) from Foam.OpenFOAM.include import createTime runTime = createTime( args ) from Foam.OpenFOAM.include import createMesh mesh = createMesh( runTime ) p, U, phi, pRefCell, pRefValue = _createFields( runTime, mesh ) from Foam.OpenFOAM import ext_Info, nl ext_Info() << nl << "Calculating potential flow" << nl from Foam.finiteVolume.cfdTools.general.include import readSIMPLEControls simple, nNonOrthCorr, momentumPredictor, fluxGradp, transonic = readSIMPLEControls( mesh ) from Foam.finiteVolume import adjustPhi adjustPhi(phi, U, p) from Foam.OpenFOAM import dimensionedScalar, word, dimTime, dimensionSet from Foam import fvc, fvm for nonOrth in range( nNonOrthCorr + 1): pEqn = fvm.laplacian( dimensionedScalar( word( "1" ), dimTime / p.dimensions() * dimensionSet( 0.0, 2.0, -2.0, 0.0, 0.0 ), 1.0 ), p ) == fvc.div( phi ) pEqn.setReference( pRefCell, pRefValue ) pEqn.solve() if nonOrth == nNonOrthCorr: phi.ext_assign( phi - pEqn.flux() ) pass pass ext_Info() << "continuity error = " << fvc.div( phi ).mag().weightedAverage( mesh.V() ).value() << nl U.ext_assign( fvc.reconstruct( phi ) ) U.correctBoundaryConditions() ext_Info() << "Interpolated U error = " << ( ( ( fvc.interpolate( U ) & mesh.Sf() ) - phi ).sqr().sum().sqrt() /mesh.magSf().sum() ).value() << nl # Force the write U.write() phi.write() if args.optionFound( word( "writep" ) ): p.write() pass ext_Info() << "ExecutionTime = " << runTime.elapsedCpuTime() << " s" << \ " ClockTime = " << runTime.elapsedClockTime() << " s" << nl << nl ext_Info() << "End\n" << nl import os return os.EX_OK
def _pEqn( runTime, mesh, UEqn, thermo, p, psi, U, rho, phi, DpDt, g, initialMass, totalVolume, corr, nCorr, nNonOrthCorr, cumulativeContErr ): closedVolume = p.needReference() rho.ext_assign( thermo.rho() ) # Thermodynamic density needs to be updated by psi*d(p) after the # pressure solution - done in 2 parts. Part 1: thermo.rho().ext_assign( thermo.rho() - psi * p ) rUA = 1.0/UEqn.A() from Foam.OpenFOAM import word from Foam.finiteVolume import surfaceScalarField from Foam import fvc rhorUAf = surfaceScalarField( word( "(rho*(1|A(U)))" ), fvc.interpolate( rho * rUA ) ) U.ext_assign( rUA * UEqn.H() ) phiU = fvc.interpolate( rho ) * ( (fvc.interpolate( U ) & mesh.Sf() ) + fvc.ddtPhiCorr( rUA, rho, U, phi ) ) phi.ext_assign( phiU + rhorUAf * fvc.interpolate( rho ) * (g & mesh.Sf() ) ) for nonOrth in range( nNonOrthCorr+1 ): from Foam import fvm from Foam.finiteVolume import correction pEqn = fvc.ddt( rho ) + psi * correction( fvm.ddt( p ) ) + fvc.div( phi ) - fvm.laplacian( rhorUAf, p ) if corr == nCorr-1 and nonOrth == nNonOrthCorr: pEqn.solve( mesh.solver( word( str( p.name() ) + "Final" ) ) ) pass else: pEqn.solve( mesh.solver( p.name() ) ) pass if nonOrth == nNonOrthCorr: phi.ext_assign( phi + pEqn.flux() ) pass # Second part of thermodynamic density update thermo.rho().ext_assign( thermo.rho() + psi * p ) U.ext_assign( U + rUA * fvc.reconstruct( ( phi - phiU ) / rhorUAf ) ) U.correctBoundaryConditions() DpDt.ext_assign( fvc.DDt( surfaceScalarField( word( "phiU" ), phi / fvc.interpolate( rho ) ), p ) ) from Foam.finiteVolume.cfdTools.compressible import rhoEqn rhoEqn( rho, phi ) from Foam.finiteVolume.cfdTools.compressible import compressibleContinuityErrs cumulativeContErr = compressibleContinuityErrs( rho, thermo, cumulativeContErr ) # For closed-volume cases adjust the pressure and density levels # to obey overall mass continuity if closedVolume: p.ext_assign( p + ( initialMass - fvc.domainIntegrate( psi * p ) ) / fvc.domainIntegrate( psi ) ) thermo.rho().ext_assign( psi * p ) rho.ext_assign( rho + ( initialMass - fvc.domainIntegrate( rho ) ) / totalVolume ) pass return cumulativeContErr
def fun_pEqn( i, mesh, p, rho, turb, thermo, thermoFluid, K, UEqn, U, phi, psi, DpDt, initialMass, p_rgh, gh, ghf, \ nNonOrthCorr, oCorr, nOuterCorr, corr, nCorr, cumulativeContErr ) : closedVolume = p_rgh.needReference() rho.ext_assign( thermo.rho() ) rUA = 1.0 / UEqn.A() from Foam import fvc from Foam.OpenFOAM import word from Foam.finiteVolume import surfaceScalarField rhorUAf = surfaceScalarField( word( "(rho*(1|A(U)))" ) , fvc.interpolate( rho * rUA ) ) U.ext_assign( rUA * UEqn.H() ) from Foam import fvc phiU = ( fvc.interpolate( rho ) * ( ( fvc.interpolate( U ) & mesh.Sf() ) + fvc.ddtPhiCorr( rUA, rho, U, phi ) ) ) phi.ext_assign( phiU - rhorUAf * ghf * fvc.snGrad( rho ) * mesh.magSf() ) from Foam import fvm for nonOrth in range ( nNonOrthCorr + 1 ): p_rghEqn = ( fvm.ddt( psi, p_rgh) + fvc.ddt( psi, rho ) * gh + fvc.div( phi ) - fvm.laplacian( rhorUAf, p_rgh ) ) p_rghEqn.solve( mesh.solver( p_rgh.select( ( oCorr == nOuterCorr-1 and corr == ( nCorr-1 ) and nonOrth == nNonOrthCorr ) ) ) ) if nonOrth == nNonOrthCorr : phi.ext_assign( phi + p_rghEqn.flux() ) pass pass # Correct velocity field U.ext_assign( U + rUA * fvc.reconstruct( ( phi - phiU ) / rhorUAf ) ) U.correctBoundaryConditions() p.ext_assign( p_rgh + rho * gh ) #Update pressure substantive derivative DpDt.ext_assign( fvc.DDt( surfaceScalarField( word( "phiU" ), phi / fvc.interpolate( rho ) ), p ) ) # Solve continuity from Foam.finiteVolume.cfdTools.compressible import rhoEqn rhoEqn( rho, phi ) # Update continuity errors cumulativeContErr = compressibleContinuityErrors( i, mesh, rho, thermo, cumulativeContErr ) # For closed-volume cases adjust the pressure and density levels # to obey overall mass continuity if closedVolume : p.ext_assign( p + ( initialMass - fvc.domainIntegrate( psi * p ) ) / fvc.domainIntegrate( psi ) ) rho.ext_assign( thermo.rho() ) p_rgh.ext_assign( p - rho * gh ) pass #Update thermal conductivity K.ext_assign( thermoFluid[ i ].Cp() * turb.alphaEff() ) return cumulativeContErr
def fun_pEqn(runTime, mesh, p, phi, U, UEqn, g, rhok, eqnResidual, maxResidual, nNonOrthCorr, cumulativeContErr, pRefCell, pRefValue): from Foam.finiteVolume import volScalarField, surfaceScalarField from Foam.OpenFOAM import word from Foam import fvc rUA = volScalarField(word("rUA"), 1.0 / UEqn().A()) rUAf = surfaceScalarField(word("(1|A(U))"), fvc.interpolate(rUA)) U.ext_assign(rUA * UEqn().H()) UEqn.clear() from Foam import fvc phi.ext_assign(fvc.interpolate(U) & mesh.Sf()) from Foam.finiteVolume import adjustPhi adjustPhi(phi, U, p) buoyancyPhi = rUAf * fvc.interpolate(rhok) * (g & mesh.Sf()) phi.ext_assign(phi + buoyancyPhi) for nonOrth in range(nNonOrthCorr + 1): from Foam import fvm, fvc pEqn = fvm.laplacian(rUAf, p) == fvc.div(phi) pEqn.setReference(pRefCell, pRefValue) # retain the residual from the first iteration if (nonOrth == 0): eqnResidual = pEqn.solve().initialResidual() maxResidual = max(eqnResidual, maxResidual) pass else: pEqn.solve() pass if (nonOrth == nNonOrthCorr): # Calculate the conservative fluxes phi.ext_assign(phi - pEqn.flux()) # Explicitly relax pressure for momentum corrector p.relax() # Correct the momentum source with the pressure gradient flux # calculated from the relaxed pressure U.ext_assign(U + rUA * fvc.reconstruct((buoyancyPhi - pEqn.flux()) / rUAf)) U.correctBoundaryConditions() pass pass from Foam.finiteVolume.cfdTools.incompressible import continuityErrs cumulativeContErr = continuityErrs(mesh, phi, runTime, cumulativeContErr) return eqnResidual, maxResidual, cumulativeContErr
def fun_pEqn(thermo, g, rho, UEqn, p, U, psi, phi, initialMass, runTime, mesh, nNonOrthCorr, pRefCell, eqnResidual, maxResidual, cumulativeContErr): rho.ext_assign(thermo.rho()) rUA = 1.0 / UEqn.A() from Foam.OpenFOAM import word from Foam import fvc, fvm from Foam.finiteVolume import surfaceScalarField rhorUAf = surfaceScalarField(word("(rho*(1|A(U)))"), fvc.interpolate(rho * rUA)) U.ext_assign(rUA * UEqn.H()) UEqn.clear() phi.ext_assign(fvc.interpolate(rho) * (fvc.interpolate(U) & mesh.Sf())) from Foam.finiteVolume import adjustPhi closedVolume = adjustPhi(phi, U, p) buoyancyPhi = surfaceScalarField(rhorUAf * fvc.interpolate(rho) * (g & mesh.Sf())) phi.ext_assign(phi + buoyancyPhi) for nonOrth in range(nNonOrthCorr + 1): from Foam import fvm pEqn = fvm.laplacian(rhorUAf, p) == fvc.div(phi) pEqn.setReference(pRefCell, p[pRefCell]) if (nonOrth == 0): eqnResidual = pEqn.solve().initialResidual() maxResidual = max(eqnResidual, maxResidual) else: pEqn.solve() if (nonOrth == nNonOrthCorr): if (closedVolume): p.ext_assign(p + (initialMass - fvc.domainIntegrate(psi * p)) / fvc.domainIntegrate(psi)) phi.ext_assign(phi - pEqn.flux()) p.relax() U.ext_assign(U + rUA * fvc.reconstruct( (buoyancyPhi - pEqn.flux()) / rhorUAf)) U.correctBoundaryConditions() from Foam.finiteVolume.cfdTools.general.include import ContinuityErrs cumulativeContErr = ContinuityErrs(phi, runTime, mesh, cumulativeContErr) rho.ext_assign(thermo.rho()) rho.relax() ext_Info() << "rho max/min : " << rho.ext_max().value( ) << " " << rho.ext_min().value() << nl return eqnResidual, maxResidual, cumulativeContErr
def fun_pEqn( runTime, mesh, p, phi, U, UEqn, g, rhok, eqnResidual, maxResidual, nNonOrthCorr, cumulativeContErr, pRefCell, pRefValue ): from Foam.finiteVolume import volScalarField, surfaceScalarField from Foam.OpenFOAM import word from Foam import fvc rUA = volScalarField( word( "rUA" ), 1.0 / UEqn().A() ) rUAf = surfaceScalarField(word( "(1|A(U))" ), fvc.interpolate( rUA ) ) U.ext_assign( rUA * UEqn().H() ) UEqn.clear() from Foam import fvc phi.ext_assign( fvc.interpolate( U ) & mesh.Sf() ) from Foam.finiteVolume import adjustPhi adjustPhi( phi, U, p ) buoyancyPhi = rUAf * fvc.interpolate( rhok ) * ( g & mesh.Sf() ) phi.ext_assign( phi + buoyancyPhi ) for nonOrth in range( nNonOrthCorr+1 ): from Foam import fvm, fvc pEqn = fvm.laplacian(rUAf, p) == fvc.div(phi) pEqn.setReference( pRefCell, pRefValue ) # retain the residual from the first iteration if ( nonOrth == 0 ): eqnResidual = pEqn.solve().initialResidual() maxResidual = max( eqnResidual, maxResidual ) pass else: pEqn.solve() pass if ( nonOrth == nNonOrthCorr ): # Calculate the conservative fluxes phi.ext_assign( phi - pEqn.flux() ) # Explicitly relax pressure for momentum corrector p.relax() # Correct the momentum source with the pressure gradient flux # calculated from the relaxed pressure U.ext_assign( U + rUA * fvc.reconstruct( ( buoyancyPhi - pEqn.flux() ) / rUAf ) ) U.correctBoundaryConditions() pass pass from Foam.finiteVolume.cfdTools.incompressible import continuityErrs cumulativeContErr = continuityErrs( mesh, phi, runTime, cumulativeContErr ) return eqnResidual, maxResidual, cumulativeContErr
def fun_pEqn( mesh, p, rho, psi, p_rgh, U, phi, ghf, gh, DpDt, UEqn, thermo, nNonOrthCorr, corr, nCorr, finalIter, cumulativeContErr ): rho.ext_assign( thermo.rho() ) # Thermodynamic density needs to be updated by psi*d(p) after the # pressure solution - done in 2 parts. Part 1: thermo.rho().ext_assign( thermo.rho() - psi * p_rgh ) rUA = 1.0 / UEqn.A() from Foam.finiteVolume import surfaceScalarField from Foam.OpenFOAM import word from Foam import fvc rhorUAf = surfaceScalarField( word( "(rho*(1|A(U)))" ), fvc.interpolate( rho * rUA ) ) U.ext_assign( rUA*UEqn.H() ) phi.ext_assign( fvc.interpolate( rho ) * ( ( fvc.interpolate( U ) & mesh.Sf() ) + fvc.ddtPhiCorr( rUA, rho, U, phi ) ) ) buoyancyPhi = -rhorUAf * ghf * fvc.snGrad( rho ) * mesh.magSf() phi.ext_assign( phi + buoyancyPhi ) from Foam import fvm from Foam.finiteVolume import correction for nonOrth in range( nNonOrthCorr +1 ): p_rghEqn = fvc.ddt( rho ) + psi * correction( fvm.ddt( p_rgh ) ) + fvc.div( phi ) - fvm.laplacian( rhorUAf, p_rgh ) p_rghEqn.solve( mesh.solver( p_rgh.select( ( finalIter and corr == nCorr-1 and nonOrth == nNonOrthCorr ) ) ) ) if nonOrth == nNonOrthCorr: # Calculate the conservative fluxes phi.ext_assign( phi + p_rghEqn.flux() ) # Explicitly relax pressure for momentum corrector p_rgh.relax() # Correct the momentum source with the pressure gradient flux # calculated from the relaxed pressure U.ext_assign( U + rUA * fvc.reconstruct( ( buoyancyPhi + p_rghEqn.flux() ) / rhorUAf ) ) U.correctBoundaryConditions() pass p.ext_assign( p_rgh + rho * gh ) # Second part of thermodynamic density update thermo.rho().ext_assign( thermo.rho() + psi * p_rgh ) DpDt.ext_assign( fvc.DDt( surfaceScalarField( word( "phiU" ), phi / fvc.interpolate( rho ) ), p ) ) from Foam.finiteVolume.cfdTools.compressible import rhoEqn rhoEqn( rho, phi ) from Foam.finiteVolume.cfdTools.compressible import compressibleContinuityErrs cumulativeContErr = compressibleContinuityErrs( rho, thermo, cumulativeContErr ) return cumulativeContErr
def Ueqn( mesh, phi, U, rho, p, g, turbulence, eqnResidual, maxResidual ): from Foam import fvm, fvc UEqn = fvm.div( phi, U ) + turbulence.divDevRhoReff( U ) UEqn.relax() from Foam.finiteVolume import solve eqnResidual = solve( UEqn() == fvc.reconstruct( fvc.interpolate( rho )*( g & mesh.Sf() ) - fvc.snGrad( p ) * mesh.magSf() ) ).initialResidual() maxResidual = max(eqnResidual, maxResidual) return UEqn, eqnResidual, maxResidual
def _pEqn( runTime, mesh, UEqn, U, p, p_rgh, gh, ghf, phi, alpha1, rho, g, interface, corr, nCorr, nNonOrthCorr, pRefCell, pRefValue, cumulativeContErr ): rAU = 1.0/UEqn.A() from Foam import fvc rAUf = fvc.interpolate( rAU ) U.ext_assign( rAU * UEqn.H() ) from Foam.finiteVolume import surfaceScalarField from Foam.OpenFOAM import word phiU = surfaceScalarField( word( "phiU" ), fvc.interpolate( U ) & mesh.Sf() ) if p_rgh.needReference(): fvc.makeRelative( phiU, U ) from Foam.finiteVolume import adjustPhi adjustPhi( phiU, U, p ) fvc.makeAbsolute( phiU, U ) pass phi.ext_assign( phiU + ( fvc.interpolate( interface.sigmaK() ) * fvc.snGrad( alpha1 ) - ghf * fvc.snGrad( rho ) )*rAUf*mesh.magSf() ) from Foam import fvm for nonOrth in range( nNonOrthCorr + 1 ): p_rghEqn = fvm.laplacian( rAUf, p_rgh ) == fvc.div( phi ) p_rghEqn.setReference( pRefCell, pRefValue ) p_rghEqn.solve( mesh.solver( p_rgh.select(corr == nCorr-1 and nonOrth == nNonOrthCorr) ) ) if nonOrth == nNonOrthCorr: phi.ext_assign( phi - p_rghEqn.flux() ) pass pass U.ext_assign( U + rAU * fvc.reconstruct( ( phi - phiU ) / rAUf ) ) U.correctBoundaryConditions() from Foam.finiteVolume.cfdTools.incompressible import continuityErrs cumulativeContErr = continuityErrs( mesh, phi, runTime, cumulativeContErr ) # Make the fluxes relative to the mesh motion fvc.makeRelative( phi, U ) p == p_rgh + rho * gh if p_rgh.needReference(): from Foam.OpenFOAM import pRefValue p.ext_assign( p + dimensionedScalar( word( "p" ), p.dimensions(), pRefValue - getRefCellValue(p, pRefCell) ) ) p_rgh.ext_assign( p - rho * gh ) pass return cumulativeContErr
def fun_UEqn( phi, U, p_rgh, turbulence, mesh, ghf, rhok, eqnResidual, maxResidual, momentumPredictor ): from Foam import fvm, fvc UEqn = fvm.div( phi, U ) + turbulence.divDevReff( U ) UEqn.relax() if momentumPredictor: from Foam.finiteVolume import solve eqnResidual = solve( UEqn == fvc.reconstruct( ( - ghf * fvc.snGrad( rhok ) - fvc.snGrad( p_rgh ) )* mesh.magSf() ) ).initialResidual() maxResidual = max(eqnResidual, maxResidual) pass return UEqn, eqnResidual, maxResidual
def fun_pEqn( thermo, g, rho, UEqn, p, U, psi, phi, initialMass, runTime, mesh, nNonOrthCorr, pRefCell, eqnResidual, maxResidual, cumulativeContErr ): rho.ext_assign( thermo.rho() ) rUA = 1.0/UEqn.A() from Foam.OpenFOAM import word from Foam import fvc,fvm from Foam.finiteVolume import surfaceScalarField rhorUAf = surfaceScalarField(word( "(rho*(1|A(U)))" ) , fvc.interpolate(rho*rUA)); U.ext_assign(rUA*UEqn.H()) UEqn.clear() phi.ext_assign( fvc.interpolate( rho )*(fvc.interpolate(U) & mesh.Sf()) ) from Foam.finiteVolume import adjustPhi closedVolume = adjustPhi(phi, U, p); buoyancyPhi =surfaceScalarField( rhorUAf * fvc.interpolate( rho )*( g & mesh.Sf() ) ) phi.ext_assign( phi+buoyancyPhi ) for nonOrth in range( nNonOrthCorr+1 ): from Foam import fvm pEqn = fvm.laplacian(rhorUAf, p) == fvc.div(phi) pEqn.setReference(pRefCell, p[pRefCell]); if (nonOrth == 0): eqnResidual = pEqn.solve().initialResidual() maxResidual = max(eqnResidual, maxResidual) else: pEqn.solve() if (nonOrth == nNonOrthCorr): if (closedVolume): p.ext_assign( p + ( initialMass - fvc.domainIntegrate( psi * p ) ) / fvc.domainIntegrate( psi ) ) phi.ext_assign( phi - pEqn.flux() ) p.relax() U.ext_assign( U + rUA * fvc.reconstruct( ( buoyancyPhi - pEqn.flux() ) / rhorUAf ) ) U.correctBoundaryConditions(); from Foam.finiteVolume.cfdTools.general.include import ContinuityErrs cumulativeContErr = ContinuityErrs( phi, runTime, mesh, cumulativeContErr ) rho.ext_assign( thermo.rho() ) rho.relax() ext_Info()<< "rho max/min : " << rho.ext_max().value() << " " << rho.ext_min().value() << nl return eqnResidual, maxResidual, cumulativeContErr
def fun_UEqn( turbulence, phi, U, rho, g, p, ghf, p_rgh, mesh, eqnResidual, maxResidual, momentumPredictor ): from Foam import fvm, fvc UEqn = fvm.div(phi, U) + turbulence.divDevRhoReff(U) UEqn.relax() if momentumPredictor: from Foam.finiteVolume import solve eqnResidual = solve( UEqn == fvc.reconstruct( (- ghf * fvc.snGrad( rho ) - fvc.snGrad( p_rgh ) ) * mesh.magSf() ) ).initialResidual() maxResidual = max(eqnResidual, maxResidual) pass return UEqn, eqnResidual, maxResidual
def fun_pEqn( runTime, mesh, UEqn, p, p_rgh, phi, U, rho, rho1, rho2, rho10, rho20, gh, ghf, dgdt, pMin, \ psi1, psi2, alpha1, alpha2, interface, transonic, oCorr, nOuterCorr, corr, nCorr, nNonOrthCorr ): rUA = 1.0/UEqn.A() from Foam import fvc rUAf = fvc.interpolate( rUA ) p_rghEqnComp = None from Foam import fvm if transonic: p_rghEqnComp = fvm.ddt( p_rgh ) + fvm.div( phi, p_rgh ) - fvm.Sp( fvc.div( phi ), p_rgh ) pass else: p_rghEqnComp = fvm.ddt( p_rgh ) + fvc.div( phi, p_rgh ) - fvc.Sp( fvc.div( phi ), p_rgh ) pass U.ext_assign( rUA * UEqn.H() ) from Foam.finiteVolume import surfaceScalarField from Foam.OpenFOAM import word phiU = surfaceScalarField( word( "phiU" ), ( fvc.interpolate( U ) & mesh.Sf() ) + fvc.ddtPhiCorr( rUA, rho, U, phi ) ) phi.ext_assign(phiU + ( fvc.interpolate( interface.sigmaK() ) * fvc.snGrad( alpha1 ) - ghf * fvc.snGrad( rho ) ) * rUAf * mesh.magSf() ) from Foam.finiteVolume import solve from Foam.OpenFOAM import scalar for nonOrth in range( nNonOrthCorr +1 ): p_rghEqnIncomp = fvc.div( phi ) - fvm.laplacian( rUAf, p_rgh ) solve( ( alpha1.ext_max( scalar( 0 ) ) * ( psi1 / rho1 ) + alpha2.ext_max( scalar( 0 ) ) * ( psi2 / rho2 ) ) *p_rghEqnComp() + p_rghEqnIncomp, mesh.solver( p_rgh.select( oCorr == ( nOuterCorr - 1 ) and corr == ( nCorr-1 ) and nonOrth == nNonOrthCorr ) ) ) if nonOrth == nNonOrthCorr: dgdt.ext_assign( ( alpha2.pos() * ( psi2 / rho2 ) - alpha1.pos() * ( psi1 / rho1 ) ) * ( p_rghEqnComp & p_rgh ) ) phi.ext_assign( phi + p_rghEqnIncomp.flux() ) pass U.ext_assign( U + rUA * fvc.reconstruct( ( phi - phiU ) / rUAf ) ) U.correctBoundaryConditions() p.ext_assign( ( ( p_rgh + gh * ( alpha1 * rho10 + alpha2 * rho20 ) ) /( 1.0 - gh * ( alpha1 * psi1 + alpha2 * psi2 ) ) ).ext_max( pMin ) ) rho1.ext_assign( rho10 + psi1 * p ) rho2.ext_assign( rho20 + psi2 * p ) from Foam.OpenFOAM import ext_Info, nl ext_Info() << "max(U) " << U.mag().ext_max().value() << nl ext_Info() << "min(p_rgh) " << p_rgh.ext_min().value() << nl pass
def fun_UEqn( rho, U, phi, g, p, turb, mesh, momentumPredictor ) : # Solve the Momentum equation from Foam import fvm UEqn = fvm.ddt( rho, U ) + fvm.div( phi, U ) + turb.divDevRhoReff( U ) UEqn.relax() if momentumPredictor : from Foam import fvc from Foam.finiteVolume import solve solve( UEqn == fvc.reconstruct( fvc.interpolate( rho ) * ( g & mesh.Sf() ) - fvc.snGrad( p ) * mesh.magSf() ) ) pass return UEqn
def _Ueqn( U, phi, turbulence, p, rhok, g, mesh, momentumPredictor ): from Foam import fvm # Solve the momentum equation UEqn = fvm.ddt( U ) + fvm.div( phi, U ) + turbulence.divDevReff( U ) UEqn.relax() from Foam.finiteVolume import solve from Foam import fvc if momentumPredictor: solve( UEqn == fvc.reconstruct( ( fvc.interpolate( rhok ) * ( g & mesh.Sf() ) - fvc.snGrad( p ) * mesh.magSf() ) ) ) return UEqn
def fun_UEqn( rho, U, phi, ghf, p_rgh, turb, mesh, momentumPredictor ) : # Solve the Momentum equation from Foam import fvm UEqn = fvm.ddt( rho, U ) + fvm.div( phi, U ) + turb.divDevRhoReff( U ) UEqn.relax() if momentumPredictor : from Foam import fvc from Foam.finiteVolume import solve solve( UEqn == fvc.reconstruct( ( -ghf * fvc.snGrad( rho ) - fvc.snGrad( p_rgh ) )*mesh.magSf() ) ) pass return UEqn
def fun_UEqn( mesh, rho, phi, U, p_rgh, ghf, turbulence, finalIter, momentumPredictor ): from Foam import fvm, fvc # Solve the Momentum equation UEqn = fvm.ddt( rho, U ) + fvm.div( phi, U ) + turbulence.divDevRhoReff( U ) UEqn.relax() if momentumPredictor: from Foam.finiteVolume import solve solve( UEqn == fvc.reconstruct( ( - ghf * fvc.snGrad( rho ) - fvc.snGrad( p_rgh ) ) * mesh.magSf() ), mesh.solver( U.select( finalIter) ) ); return UEqn
def _pEqn(mesh, UEqn, U, p, phi, alpha1, rho, g, interface, corr, nCorr, nNonOrthCorr, pRefCell, pRefValue): rUA = 1.0 / UEqn.A() from Foam import fvc rUAf = fvc.interpolate(rUA) U.ext_assign(rUA * UEqn.H()) from Foam.finiteVolume import surfaceScalarField from Foam.OpenFOAM import word phiU = surfaceScalarField(word("phiU"), (fvc.interpolate(U) & mesh.Sf()) + fvc.ddtPhiCorr(rUA, rho, U, phi)) from Foam.finiteVolume import adjustPhi adjustPhi(phiU, U, p) phi.ext_assign( phiU + ( fvc.interpolate(interface.sigmaK()) * fvc.snGrad(alpha1) * mesh.magSf() + fvc.interpolate(rho) * (g & mesh.Sf()) ) * rUAf ) from Foam import fvm for nonOrth in range(nNonOrthCorr + 1): pEqn = fvm.laplacian(rUAf, p) == fvc.div(phi) pEqn.setReference(pRefCell, pRefValue) if corr == nCorr - 1 and nonOrth == nNonOrthCorr: pEqn.solve(mesh.solver(word(str(p.name()) + "Final"))) pass else: pEqn.solve(mesh.solver(p.name())) pass if nonOrth == nNonOrthCorr: phi.ext_assign(phi - pEqn.flux()) pass pass U.ext_assign(U + rUA * fvc.reconstruct((phi - phiU) / rUAf)) U.correctBoundaryConditions() pass
def fun_UEqn(mesh, rho, phi, U, p_rgh, ghf, turbulence, finalIter, momentumPredictor): from Foam import fvm, fvc # Solve the Momentum equation UEqn = fvm.ddt(rho, U) + fvm.div(phi, U) + turbulence.divDevRhoReff(U) UEqn.relax() if momentumPredictor: from Foam.finiteVolume import solve solve( UEqn == fvc.reconstruct( (-ghf * fvc.snGrad(rho) - fvc.snGrad(p_rgh)) * mesh.magSf()), mesh.solver(U.select(finalIter))) return UEqn
def _UEqn( mesh, alpha1, U, p, rho, rhoPhi, turbulence, g, twoPhaseProperties, interface, momentumPredictor ): from Foam.OpenFOAM import word from Foam.finiteVolume import surfaceScalarField from Foam import fvc muEff = surfaceScalarField( word( "muEff" ), twoPhaseProperties.muf() + fvc.interpolate( rho * turbulence.ext_nut() ) ) from Foam import fvm UEqn = fvm.ddt( rho, U ) + fvm.div( rhoPhi, U ) - fvm.laplacian( muEff, U ) - ( fvc.grad( U ) & fvc.grad( muEff ) ) UEqn.relax() if momentumPredictor: from Foam.finiteVolume import solve solve( UEqn == \ fvc.reconstruct( fvc.interpolate( rho ) * ( g & mesh.Sf() ) + \ ( fvc.interpolate( interface.sigmaK() ) * fvc.snGrad( alpha1 ) - fvc.snGrad( p ) ) * mesh.magSf() ) ) pass return UEqn
def _pEqn(mesh, UEqn, U, p, pd, phi, alpha1, rho, ghf, interface, corr, nCorr, nNonOrthCorr, pdRefCell, pdRefValue): rUA = 1.0 / UEqn.A() from Foam import fvc rUAf = fvc.interpolate(rUA) U.ext_assign(rUA * UEqn.H()) from Foam.finiteVolume import surfaceScalarField from Foam.OpenFOAM import word phiU = surfaceScalarField(word("phiU"), (fvc.interpolate(U) & mesh.Sf()) + fvc.ddtPhiCorr(rUA, rho, U, phi)) from Foam.finiteVolume import adjustPhi adjustPhi(phiU, U, p) phi.ext_assign(phiU + (fvc.interpolate(interface.sigmaK()) * fvc.snGrad(alpha1) - ghf * fvc.snGrad(rho)) * rUAf * mesh.magSf()) from Foam import fvm for nonOrth in range(nNonOrthCorr + 1): pdEqn = fvm.laplacian(rUAf, pd) == fvc.div(phi) pdEqn.setReference(pdRefCell, pdRefValue) if corr == nCorr - 1 and nonOrth == nNonOrthCorr: pdEqn.solve(mesh.solver(word(str(pd.name()) + "Final"))) pass else: pdEqn.solve(mesh.solver(pd.name())) pass if nonOrth == nNonOrthCorr: phi.ext_assign(phi - pdEqn.flux()) pass pass U.ext_assign(U + rUA * fvc.reconstruct((phi - phiU) / rUAf)) U.correctBoundaryConditions() pass
def fun_UEqn( mesh, alpha1, U, p, p_rgh, ghf, rho, rhoPhi, turbulence, g, twoPhaseProperties, interface, momentumPredictor, oCorr, nOuterCorr ): from Foam.OpenFOAM import word from Foam.finiteVolume import surfaceScalarField from Foam import fvc muEff = surfaceScalarField( word( "muEff" ), twoPhaseProperties.muf() + fvc.interpolate( rho * turbulence.ext_nut() ) ) from Foam import fvm UEqn = fvm.ddt( rho, U ) + fvm.div( rhoPhi, U ) - fvm.laplacian( muEff, U ) - ( fvc.grad( U ) & fvc.grad( muEff ) ) UEqn.relax() if momentumPredictor: from Foam.finiteVolume import solve solve( UEqn == \ fvc.reconstruct( ( fvc.interpolate( interface.sigmaK() ) * fvc.snGrad( alpha1 ) - ghf * fvc.snGrad( rho ) \ - fvc.snGrad( p_rgh ) ) * mesh.magSf(), mesh.solver( U.select( oCorr == nOuterCorr-1 ) ) ) ) pass return UEqn
def _pEqn(runTime, mesh, U, UEqn, phi, p, rhok, g, corr, nCorr, nNonOrthCorr, cumulativeContErr): from Foam.finiteVolume import volScalarField, surfaceScalarField from Foam.OpenFOAM import word from Foam import fvc rUA = volScalarField(word("rUA"), 1.0 / UEqn.A()) rUAf = surfaceScalarField(word("(1|A(U))"), fvc.interpolate(rUA)) U.ext_assign(rUA * UEqn.H()) phiU = (fvc.interpolate(U) & mesh.Sf()) + fvc.ddtPhiCorr(rUA, U, phi) phi.ext_assign(phiU + rUAf * fvc.interpolate(rhok) * (g & mesh.Sf())) for nonOrth in range(nNonOrthCorr + 1): from Foam import fvm pEqn = fvm.laplacian(rUAf, p) == fvc.div(phi) if (corr == nCorr - 1) and (nonOrth == nNonOrthCorr): from Foam.OpenFOAM import word pEqn.solve(mesh.solver(word(str(p.name()) + "Final"))) pass else: pEqn.solve(mesh.solver(p.name())) pass if (nonOrth == nNonOrthCorr): phi.ext_assign(phi - pEqn.flux()) pass pass U.ext_assign(U + rUA * fvc.reconstruct((phi - phiU) / rUAf)) U.correctBoundaryConditions() from Foam.finiteVolume.cfdTools.incompressible import continuityErrs cumulativeContErr = continuityErrs(mesh, phi, runTime, cumulativeContErr) return pEqn
def _pEqn( runTime, mesh, U, UEqn, phi, p, rhok, g, corr, nCorr, nNonOrthCorr, cumulativeContErr ): from Foam.finiteVolume import volScalarField, surfaceScalarField from Foam.OpenFOAM import word from Foam import fvc rUA = volScalarField( word( "rUA" ), 1.0 / UEqn.A() ) rUAf = surfaceScalarField(word( "(1|A(U))" ), fvc.interpolate( rUA ) ) U.ext_assign( rUA * UEqn.H() ) phiU = ( fvc.interpolate( U ) & mesh.Sf() ) + fvc.ddtPhiCorr( rUA, U, phi ) phi.ext_assign( phiU + rUAf * fvc.interpolate( rhok ) * ( g & mesh.Sf() ) ) for nonOrth in range( nNonOrthCorr+1 ): from Foam import fvm pEqn = fvm.laplacian( rUAf, p ) == fvc.div( phi ) if ( corr == nCorr-1 ) and (nonOrth == nNonOrthCorr): from Foam.OpenFOAM import word pEqn.solve(mesh.solver( word( str( p.name() ) + "Final" ) ) ) pass else: pEqn.solve( mesh.solver( p.name() ) ) pass if (nonOrth == nNonOrthCorr): phi.ext_assign( phi - pEqn.flux() ) pass pass U.ext_assign( U + rUA * fvc.reconstruct( ( phi - phiU ) / rUAf ) ) U.correctBoundaryConditions() from Foam.finiteVolume.cfdTools.incompressible import continuityErrs cumulativeContErr = continuityErrs( mesh, phi, runTime, cumulativeContErr ) return pEqn
def pEqn( runTime, mesh, p, phi, psi, U, UEqn, g, rho, thermo, initialMass, eqnResidual, maxResidual, nNonOrthCorr, cumulativeContErr, pRefCell, pRefValue ): rho.ext_assign( thermo.rho() ) from Foam import fvc rUA = 1.0 / UEqn().A() from Foam.finiteVolume import surfaceScalarField from Foam.OpenFOAM import word from Foam import fvc rhorUAf = surfaceScalarField( word( "(rho*(1|A(U)))" ) , fvc.interpolate( rho * rUA ) ) U.ext_assign( rUA * UEqn().H() ) UEqn.clear(); phi.ext_assign( fvc.interpolate( rho ) * ( fvc.interpolate( U ) & mesh.Sf() ) ) from Foam.finiteVolume import adjustPhi closedVolume = adjustPhi( phi, U, p ) buoyancyPhi = rhorUAf * fvc.interpolate( rho ) * (g & mesh.Sf() ) phi.ext_assign( phi + buoyancyPhi ) from Foam import fvm for nonOrth in range( nNonOrthCorr + 1): pEqn = fvm.laplacian( rhorUAf, p ) == fvc.div( phi ) pEqn.setReference( pRefCell, pRefValue ) # retain the residual from the first iteration if nonOrth == 0: eqnResidual = pEqn.solve().initialResidual() maxResidual = max(eqnResidual, maxResidual) pass else: pEqn.solve() pass if nonOrth == nNonOrthCorr: # For closed-volume cases adjust the pressure and density levels # to obey overall mass continuity if closedVolume: p.ext_assign( p + ( initialMass - fvc.domainIntegrate( psi * p ) ) / fvc.domainIntegrate( psi ) ) pass # Calculate the conservative fluxes phi.ext_assign( phi - pEqn.flux() ) # Explicitly relax pressure for momentum corrector p.relax() # Correct the momentum source with the pressure gradient flux # calculated from the relaxed pressure U.ext_assign( U + rUA * fvc.reconstruct( ( buoyancyPhi - pEqn.flux() ) / rhorUAf ) ) U.correctBoundaryConditions() pass from Foam.finiteVolume.cfdTools.incompressible import continuityErrs cumulativeContErr = continuityErrs( mesh, phi, runTime, cumulativeContErr ) rho.ext_assign( thermo.rho() ) rho.relax() from Foam.OpenFOAM import ext_Info, nl ext_Info() << "rho max/min : " << rho.ext_max().value() << " " << rho.ext_min().value() << nl return eqnResidual, maxResidual, cumulativeContErr
def fun_pEqn( i, mesh, p, rho, turb, thermo, thermoFluid, K, UEqn, U, phi, psi, DpDt, initialMass, p_rgh, gh, ghf, \ nNonOrthCorr, oCorr, nOuterCorr, corr, nCorr, cumulativeContErr ) : closedVolume = p_rgh.needReference() rho.ext_assign(thermo.rho()) rUA = 1.0 / UEqn.A() from Foam import fvc from Foam.OpenFOAM import word from Foam.finiteVolume import surfaceScalarField rhorUAf = surfaceScalarField(word("(rho*(1|A(U)))"), fvc.interpolate(rho * rUA)) U.ext_assign(rUA * UEqn.H()) from Foam import fvc phiU = (fvc.interpolate(rho) * ( (fvc.interpolate(U) & mesh.Sf()) + fvc.ddtPhiCorr(rUA, rho, U, phi))) phi.ext_assign(phiU - rhorUAf * ghf * fvc.snGrad(rho) * mesh.magSf()) from Foam import fvm for nonOrth in range(nNonOrthCorr + 1): p_rghEqn = (fvm.ddt(psi, p_rgh) + fvc.ddt(psi, rho) * gh + fvc.div(phi) - fvm.laplacian(rhorUAf, p_rgh)) p_rghEqn.solve( mesh.solver( p_rgh.select((oCorr == nOuterCorr - 1 and corr == (nCorr - 1) and nonOrth == nNonOrthCorr)))) if nonOrth == nNonOrthCorr: phi.ext_assign(phi + p_rghEqn.flux()) pass pass # Correct velocity field U.ext_assign(U + rUA * fvc.reconstruct((phi - phiU) / rhorUAf)) U.correctBoundaryConditions() p.ext_assign(p_rgh + rho * gh) #Update pressure substantive derivative DpDt.ext_assign( fvc.DDt(surfaceScalarField(word("phiU"), phi / fvc.interpolate(rho)), p)) # Solve continuity from Foam.finiteVolume.cfdTools.compressible import rhoEqn rhoEqn(rho, phi) # Update continuity errors cumulativeContErr = compressibleContinuityErrors(i, mesh, rho, thermo, cumulativeContErr) # For closed-volume cases adjust the pressure and density levels # to obey overall mass continuity if closedVolume: p.ext_assign(p + (initialMass - fvc.domainIntegrate(psi * p)) / fvc.domainIntegrate(psi)) rho.ext_assign(thermo.rho()) p_rgh.ext_assign(p - rho * gh) pass #Update thermal conductivity K.ext_assign(thermoFluid[i].Cp() * turb.alphaEff()) return cumulativeContErr
def fun_pEqn( thermo, g, rho, UEqn, p, p_rgh, U, psi, phi, ghf, gh, initialMass, runTime, mesh, nNonOrthCorr, pRefCell, eqnResidual, maxResidual, cumulativeContErr ): rho.ext_assign( thermo.rho() ) rho.relax() rUA = 1.0/UEqn.A() from Foam.OpenFOAM import word from Foam import fvc,fvm from Foam.finiteVolume import surfaceScalarField rhorUAf = surfaceScalarField(word( "(rho*(1|A(U)))" ) , fvc.interpolate(rho*rUA)); U.ext_assign(rUA*UEqn.H()) UEqn.clear() phi.ext_assign( fvc.interpolate( rho )*(fvc.interpolate(U) & mesh.Sf()) ) from Foam.finiteVolume import adjustPhi closedVolume = adjustPhi(phi, U, p_rgh ); buoyancyPhi =surfaceScalarField( rhorUAf * ghf * fvc.snGrad( rho ) * mesh.magSf() ) phi.ext_assign( phi - buoyancyPhi ) for nonOrth in range( nNonOrthCorr+1 ): from Foam import fvm p_rghEqn = fvm.laplacian(rhorUAf, p_rgh) == fvc.div(phi) from Foam.finiteVolume import getRefCellValue p_rghEqn.setReference(pRefCell, getRefCellValue( p_rgh, pRefCell ) ) eqnResidual = p_rghEqn.solve().initialResidual() if (nonOrth == 0): maxResidual = max(eqnResidual, maxResidual) pass if (nonOrth == nNonOrthCorr): # Calculate the conservative fluxes phi.ext_assign( phi - p_rghEqn.flux() ) # Explicitly relax pressure for momentum corrector p_rgh.relax() U.ext_assign( U - rUA * fvc.reconstruct( ( buoyancyPhi + p_rghEqn.flux() ) / rhorUAf ) ) U.correctBoundaryConditions() pass from Foam.finiteVolume.cfdTools.general.include import ContinuityErrs cumulativeContErr = ContinuityErrs( phi, runTime, mesh, cumulativeContErr ) p.ext_assign( p_rgh + rho * gh ) # For closed-volume cases adjust the pressure level # to obey overall mass continuity if closedVolume: p.ext_assign( p + (initialMass - fvc.domainIntegrate( psi * p ) ) / fvc.domainIntegrate( psi ) ) p_rgh.ext_assign( p - rho * gh ) rho.ext_assign( thermo.rho() ) rho.relax() ext_Info()<< "rho max/min : " << rho.ext_max().value() << " " << rho.ext_min().value() << nl return eqnResidual, maxResidual, cumulativeContErr
def fun_pEqn(thermo, g, rho, UEqn, p, p_rgh, U, psi, phi, ghf, gh, initialMass, runTime, mesh, nNonOrthCorr, pRefCell, eqnResidual, maxResidual, cumulativeContErr): rho.ext_assign(thermo.rho()) rho.relax() rUA = 1.0 / UEqn.A() from Foam.OpenFOAM import word from Foam import fvc, fvm from Foam.finiteVolume import surfaceScalarField rhorUAf = surfaceScalarField(word("(rho*(1|A(U)))"), fvc.interpolate(rho * rUA)) U.ext_assign(rUA * UEqn.H()) UEqn.clear() phi.ext_assign(fvc.interpolate(rho) * (fvc.interpolate(U) & mesh.Sf())) from Foam.finiteVolume import adjustPhi closedVolume = adjustPhi(phi, U, p_rgh) buoyancyPhi = surfaceScalarField(rhorUAf * ghf * fvc.snGrad(rho) * mesh.magSf()) phi.ext_assign(phi - buoyancyPhi) for nonOrth in range(nNonOrthCorr + 1): from Foam import fvm p_rghEqn = fvm.laplacian(rhorUAf, p_rgh) == fvc.div(phi) from Foam.finiteVolume import getRefCellValue p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell)) eqnResidual = p_rghEqn.solve().initialResidual() if (nonOrth == 0): maxResidual = max(eqnResidual, maxResidual) pass if (nonOrth == nNonOrthCorr): # Calculate the conservative fluxes phi.ext_assign(phi - p_rghEqn.flux()) # Explicitly relax pressure for momentum corrector p_rgh.relax() U.ext_assign(U - rUA * fvc.reconstruct( (buoyancyPhi + p_rghEqn.flux()) / rhorUAf)) U.correctBoundaryConditions() pass from Foam.finiteVolume.cfdTools.general.include import ContinuityErrs cumulativeContErr = ContinuityErrs(phi, runTime, mesh, cumulativeContErr) p.ext_assign(p_rgh + rho * gh) # For closed-volume cases adjust the pressure level # to obey overall mass continuity if closedVolume: p.ext_assign(p + (initialMass - fvc.domainIntegrate(psi * p)) / fvc.domainIntegrate(psi)) p_rgh.ext_assign(p - rho * gh) rho.ext_assign(thermo.rho()) rho.relax() ext_Info() << "rho max/min : " << rho.ext_max().value( ) << " " << rho.ext_min().value() << nl return eqnResidual, maxResidual, cumulativeContErr
def _pEqn(runTime, mesh, UEqn, thermo, p, psi, U, rho, phi, DpDt, g, initialMass, totalVolume, corr, nCorr, nNonOrthCorr, cumulativeContErr): closedVolume = p.needReference() rho.ext_assign(thermo.rho()) # Thermodynamic density needs to be updated by psi*d(p) after the # pressure solution - done in 2 parts. Part 1: thermo.rho().ext_assign(thermo.rho() - psi * p) rUA = 1.0 / UEqn.A() from Foam.OpenFOAM import word from Foam.finiteVolume import surfaceScalarField from Foam import fvc rhorUAf = surfaceScalarField(word("(rho*(1|A(U)))"), fvc.interpolate(rho * rUA)) U.ext_assign(rUA * UEqn.H()) phiU = fvc.interpolate(rho) * ( (fvc.interpolate(U) & mesh.Sf()) + fvc.ddtPhiCorr(rUA, rho, U, phi)) phi.ext_assign(phiU + rhorUAf * fvc.interpolate(rho) * (g & mesh.Sf())) for nonOrth in range(nNonOrthCorr + 1): from Foam import fvm from Foam.finiteVolume import correction pEqn = fvc.ddt(rho) + psi * correction( fvm.ddt(p)) + fvc.div(phi) - fvm.laplacian(rhorUAf, p) if corr == nCorr - 1 and nonOrth == nNonOrthCorr: pEqn.solve(mesh.solver(word(str(p.name()) + "Final"))) pass else: pEqn.solve(mesh.solver(p.name())) pass if nonOrth == nNonOrthCorr: phi.ext_assign(phi + pEqn.flux()) pass # Second part of thermodynamic density update thermo.rho().ext_assign(thermo.rho() + psi * p) U.ext_assign(U + rUA * fvc.reconstruct((phi - phiU) / rhorUAf)) U.correctBoundaryConditions() DpDt.ext_assign( fvc.DDt(surfaceScalarField(word("phiU"), phi / fvc.interpolate(rho)), p)) from Foam.finiteVolume.cfdTools.compressible import rhoEqn rhoEqn(rho, phi) from Foam.finiteVolume.cfdTools.compressible import compressibleContinuityErrs cumulativeContErr = compressibleContinuityErrs(rho, thermo, cumulativeContErr) # For closed-volume cases adjust the pressure and density levels # to obey overall mass continuity if closedVolume: p.ext_assign(p + (initialMass - fvc.domainIntegrate(psi * p)) / fvc.domainIntegrate(psi)) thermo.rho().ext_assign(psi * p) rho.ext_assign(rho + (initialMass - fvc.domainIntegrate(rho)) / totalVolume) pass return cumulativeContErr
def fun_pEqn(mesh, p, rho, psi, p_rgh, U, phi, ghf, gh, DpDt, UEqn, thermo, nNonOrthCorr, corr, nCorr, finalIter, cumulativeContErr): rho.ext_assign(thermo.rho()) # Thermodynamic density needs to be updated by psi*d(p) after the # pressure solution - done in 2 parts. Part 1: thermo.rho().ext_assign(thermo.rho() - psi * p_rgh) rUA = 1.0 / UEqn.A() from Foam.finiteVolume import surfaceScalarField from Foam.OpenFOAM import word from Foam import fvc rhorUAf = surfaceScalarField(word("(rho*(1|A(U)))"), fvc.interpolate(rho * rUA)) U.ext_assign(rUA * UEqn.H()) phi.ext_assign( fvc.interpolate(rho) * ((fvc.interpolate(U) & mesh.Sf()) + fvc.ddtPhiCorr(rUA, rho, U, phi))) buoyancyPhi = -rhorUAf * ghf * fvc.snGrad(rho) * mesh.magSf() phi.ext_assign(phi + buoyancyPhi) from Foam import fvm from Foam.finiteVolume import correction for nonOrth in range(nNonOrthCorr + 1): p_rghEqn = fvc.ddt(rho) + psi * correction( fvm.ddt(p_rgh)) + fvc.div(phi) - fvm.laplacian(rhorUAf, p_rgh) p_rghEqn.solve( mesh.solver( p_rgh.select((finalIter and corr == nCorr - 1 and nonOrth == nNonOrthCorr)))) if nonOrth == nNonOrthCorr: # Calculate the conservative fluxes phi.ext_assign(phi + p_rghEqn.flux()) # Explicitly relax pressure for momentum corrector p_rgh.relax() # Correct the momentum source with the pressure gradient flux # calculated from the relaxed pressure U.ext_assign(U + rUA * fvc.reconstruct( (buoyancyPhi + p_rghEqn.flux()) / rhorUAf)) U.correctBoundaryConditions() pass p.ext_assign(p_rgh + rho * gh) # Second part of thermodynamic density update thermo.rho().ext_assign(thermo.rho() + psi * p_rgh) DpDt.ext_assign( fvc.DDt(surfaceScalarField(word("phiU"), phi / fvc.interpolate(rho)), p)) from Foam.finiteVolume.cfdTools.compressible import rhoEqn rhoEqn(rho, phi) from Foam.finiteVolume.cfdTools.compressible import compressibleContinuityErrs cumulativeContErr = compressibleContinuityErrs(rho, thermo, cumulativeContErr) return cumulativeContErr
def main_standalone(argc, argv): from Foam.OpenFOAM import argList, word argList.validOptions.fget().insert(word("writep"), "") from Foam.OpenFOAM.include import setRootCase args = setRootCase(argc, argv) from Foam.OpenFOAM.include import createTime runTime = createTime(args) from Foam.OpenFOAM.include import createMesh mesh = createMesh(runTime) p, U, phi, pRefCell, pRefValue = _createFields(runTime, mesh) from Foam.OpenFOAM import ext_Info, nl ext_Info() << nl << "Calculating potential flow" << nl from Foam.finiteVolume.cfdTools.general.include import readSIMPLEControls simple, nNonOrthCorr, momentumPredictor, transonic = readSIMPLEControls( mesh) from Foam.finiteVolume import adjustPhi adjustPhi(phi, U, p) from Foam.OpenFOAM import dimensionedScalar, word, dimTime, dimensionSet from Foam import fvc, fvm for nonOrth in range(nNonOrthCorr + 1): pEqn = fvm.laplacian( dimensionedScalar( word("1"), dimTime / p.dimensions() * dimensionSet(0.0, 2.0, -2.0, 0.0, 0.0), 1.0), p) == fvc.div(phi) pEqn.setReference(pRefCell, pRefValue) pEqn.solve() if nonOrth == nNonOrthCorr: phi.ext_assign(phi - pEqn.flux()) pass pass ext_Info() << "continuity error = " << fvc.div(phi).mag().weightedAverage( mesh.V()).value() << nl U.ext_assign(fvc.reconstruct(phi)) U.correctBoundaryConditions() ext_Info() << "Interpolated U error = " << ( ((fvc.interpolate(U) & mesh.Sf()) - phi).sqr().sum().sqrt() / mesh.magSf().sum()).value() << nl # Force the write U.write() phi.write() if args.optionFound(word("writep")): p.write() pass ext_Info() << "ExecutionTime = " << runTime.elapsedCpuTime() << " s" << \ " ClockTime = " << runTime.elapsedClockTime() << " s" << nl << nl ext_Info() << "End\n" << nl import os return os.EX_OK