예제 #1
0
def SeparatedFractureGen(threshold=None,
                         aspect_ratio=None,
                         min_angle=None,
                         max_angle=None,
                         sides=None):
    """
    Function to generate fractures separated by a minimum threshold.
    
    Parameters
    ----------
    threshold: float
        the minimum amount of separations betwen fractures
    min_angle: float
        minimum angle of rotation for polygon (Default:None)
    max_angle: float
        maximum angle of rotation for polygon (Default:None)
    aspect_ratio: flaot
        aspect ratio for ellipses
    sides: int
        number of sides for polygon
    """
    if fracture_shape == 'circle':
        # Generate a single fracture to initiate the comparism
        # layer name for the frcature
        layer_name = "FRACTURE_1"
        # create an istance of Fracture class
        frac = Fracture()
        # store fracture name
        frac.fracture_name = layer_name
        # generate origin for fracture
        origin = GeneratePoint(boxlength)
        # store farcture center
        frac.fracture_center = origin
        # convert the origin to a plane
        plane = InclinePlane(origin, boxlength)
        # add layer and color
        rs.AddLayer(layer_name, rs.CreateColor(0, 255, 0))
        # make current layer
        rs.CurrentLayer(layer_name)
        # insert the fracture in the domain
        my_circle = rs.AddCircle(plane, radius)
        # circle_list.append(my_circle)
        surf = rs.AddPlanarSrf(my_circle)
        # save fracture's GUID
        frac.fracture_GUID = surf[0]
        # append fracture into fracture list
        fracture_list = [frac]
        nfrac = 1
        k = 0
        while nfrac < n:
            # generate origin for fracture
            origin = GeneratePoint(boxlength)
            good_location = True
            for fracture in fracture_list:
                p = fracture.fracture_center
                dist = rs.Distance(p, origin)
                if dist <= threshold:
                    good_location = False
                    break
            if good_location:
                # layer name for the frcature
                layer_name = "FRACTURE_" + str(k + 2)
                # create an istance of Fracture class
                frac = Fracture()
                # store fracture name
                frac.fracture_name = layer_name
                # generate origin for fracture
                origin = GeneratePoint(boxlength)
                # store farcture center
                frac.fracture_center = origin
                # convert the origin to a plane
                plane = InclinePlane(origin, boxlength)
                # add layer and color
                rs.AddLayer(layer_name, rs.CreateColor(0, 255, 0))
                # make current layer
                rs.CurrentLayer(layer_name)
                # insert the fracture in the domain
                my_circle = rs.AddCircle(plane, radius)
                # circle_list.append(my_circle)
                surf = rs.AddPlanarSrf(my_circle)
                # save fracture's GUID
                frac.fracture_GUID = surf[0]
                # append fracture into fracture list
                fracture_list.append(frac)
                nfrac += 1
                k += 1
    # return list of fractures
    return fracture_list
def FixedFractureGen(n, aspect_ratio=None, sides=None):
    """
    A function to add a fixed number of circles in a cube. It also writes data 
    to fracture data text file for regenerating fracture networks.
    """
    if fracture_shape == 'circle':
        # initialize a to store fractures
        fracture_list = []
        # a loop to insert the fixed number of fractures
        for i in range(n):
            #layer name for the frcature
            layer_name = "FRACTURE_" + str(i + 1)
            #create an istance of Fracture class
            frac = Fracture()
            #store fracture name
            frac.fracture_name = layer_name
            #generate origin for fracture
            origin = GeneratePoint(boxlength)
            #store farcture center
            frac.fracture_center = origin
            #convert the origin to a plane
            plane = InclinePlane(origin)
            #add layer and color
            rs.AddLayer(layer_name, rs.CreateColor(0, 255, 0))
            #make current layer
            rs.CurrentLayer(layer_name)
            #insert the fracture in the domain
            my_circle = rs.AddCircle(plane, radius)
            #circle_list.append(my_circle)
            surf = rs.AddPlanarSrf(my_circle)
            #delete initial fracture drawn which is a curve
            rs.DeleteObject(my_circle)
            #save fracture's GUID
            frac.fracture_GUID = surf[0]
            #append fracture into fracture list
            fracture_list.append(frac)

    elif fracture_shape == 'ellipse':
        #list to store fracture surface GUIDs
        fracture_list = []
        for i in range(n):
            #layer name for the frcature
            layer_name = "FRACTURE_" + str(i + 1)
            #create an istance of Fracture class
            frac = Fracture()
            frac.fracture_name = layer_name
            #generate fracture origin
            origin = GeneratePoint(boxlength)
            frac.fracture_center = origin
            #plane for fracture
            plane = InclinePlane(origin)
            #calculate r_y
            ry = radius / aspect_ratio
            #create layer for fracture
            rs.AddLayer(layer_name, rs.CreateColor(0, 255, 0))
            rs.CurrentLayer(layer_name)
            #draw ellipse
            fracture = rs.AddEllipse(plane, radius, ry)
            # write the plane, r_x and r_y to file for re-plotting
            ##file.write("\n" + str(plane[0]) + "," +  str(plane[1]) + "," +  str(plane[2]) + "," + str(radius) + ","+ str(ry))
            #make fracture a surface
            frac_surf = rs.AddPlanarSrf(fracture)
            #delete initial fracture drawn which is a curve
            rs.DeleteObject(fracture)
            #append surface GUID to list of fracture surfaces
            frac.fracture_GUID = frac_surf[0]
            fracture_list.append(frac)

    elif fracture_shape == 'polygon':
        #list to store fracture surface GUIDs
        fracture_list = []
        #write the shape type
        ##file.write('\npolygon\n')
        for i in range(n):
            layer_name = "FRACTURE_" + str(i + 1)
            frac = Fracture()
            frac.fracture_name = layer_name
            #theta in radian
            theta_rad = (2 * math.pi) / sides
            #theta in degree (interior angles)
            theta_deg = theta_rad * (180 / math.pi)
            #generate origin
            origin = GeneratePoint(boxlength)
            frac.fracture_center = origin
            #create a 3D point object which isn't visible to the rhino document
            pt_01 = rs.coerce3dvector(
                [radius + origin[0], origin[1], origin[2]])
            #empty list to store all points
            points = []
            #a rotation axis
            ax = rs.coerce3dvector([0, 0, 1])
            #loop to generate points for polygon vertices
            #file.write("\n")
            for j in range(sides):
                #rotation transform with rotation from the origin
                trans = rs.XformRotation2(theta_deg * j, ax, origin)
                #transform the original 3D point and append to list
                points.append(rs.PointTransform(pt_01, trans))
            # append the initial point to close the polygon
            points.append(pt_01)
            # create layer for fracture
            # layer_name = "FRACTURE_" + str(i+1)
            rs.AddLayer(layer_name, rs.CreateColor(0, 255, 0))
            rs.CurrentLayer(layer_name)
            # get GUID of created polygon
            polygon = rs.AddPolyline(points)
            # polygon = rs.AddPolyline(points)
            plane = InclinePlane(origin, boxlength)
            cob = rs.XformChangeBasis(rs.WorldXYPlane(), plane)
            shear2d = rs.XformIdentity()
            shear2d[0, 2] = math.tan(math.radians(45.0))
            cob_inverse = rs.XformChangeBasis(plane, rs.WorldXYPlane())
            temp = rs.XformMultiply(shear2d, cob)
            xform = rs.XformMultiply(cob_inverse, temp)
            fracture = rs.TransformObjects(polygon, xform, False)
            # make fracture a surface
            frac_surf = rs.AddPlanarSrf(fracture)
            # delete initial fracture drawn which is a curve
            rs.DeleteObject(fracture)
            frac.fracture_GUID = frac_surf[0]
            fracture_list.append(frac)
    return fracture_list
예제 #3
0
def RandomFractureGen(frac_min,
                      frac_max,
                      radius_min,
                      radius_max,
                      aspect_min=None,
                      aspect_max=None,
                      polysize_min=None,
                      polysize_max=None):
    """
    Funtions to generate fractures of random number and sizes
    
    Parameters
    ----------
    frac_min: int
        minimum number of fractures to generate
    frac_max: int
        maximum number of fractures to generate
    radius_min: float
        minimum size of fractures
    radius_max: float
        maximum number of fractures to generate
    aspect_min: float
        minimum aspect ratio fpr ellipses (Default:None)
    aspect_max: float
        maximum aspect ratio fpr ellipses (Default:None)
    polysize_min: int
        minimum size of polygon (Default:None)
    polysize_max: int
        maximum size of polygon (Default:None)
    """
    # randomly determine the number of fractures to generate
    num_frac = random.randint(frac_min, frac_max)
    # open file and append to it
    file = open(path, 'a')
    if fracture_shape == 'circle':
        # write the shape type
        file.write('\ncircle')
        # initialize list to store fractures
        fracture_list = []
        # loop to generate fractures
        for i in range(num_frac):
            # name the layer
            layer_name = "FRACTURE_" + str(i + 1)
            # an instance of fracture object
            frac = Fracture()
            # get fracture name
            frac.fracture_name = layer_name
            # generate fracture center
            origin = GeneratePoint(boxlength)
            # store fracture center
            frac.fracture_center = origin
            # convert the origin to a plane
            plane = InclinePlane(origin, boxlength)
            # add layer and create color for it
            rs.AddLayer(layer_name, rs.CreateColor(0, 255, 0))
            # make layer current layer
            rs.CurrentLayer(layer_name)
            # generate fracture size
            radius = FractureSize(size_dist, radius_min, radius_max)
            # insert the circle in the domain
            my_circle = rs.AddCircle(plane, radius)
            # write the plane and radius to file for re-plotting
            file.write("\n" + str(plane[0]) + "," + str(plane[1]) + "," +
                       str(plane[2]) + "," + str(radius))
            surf = rs.AddPlanarSrf(my_circle)
            # delete initial fracture drawn which is a curve
            rs.DeleteObject(my_circle)
            # set fracture guid into its object
            frac.fracture_GUID = surf[0]
            fracture_list.append(frac)

    elif fracture_shape == 'ellipse':
        # initialize list to store fractures
        fracture_list = []
        # write the shape type
        file.write('\nellipse')
        for i in range(num_frac):
            # name the layer
            layer_name = "FRACTURE_" + str(i + 1)
            # an instance of fracture object
            frac = Fracture()
            # get fracture name
            frac.fracture_name = layer_name
            # generate fracture center
            origin = GeneratePoint(boxlength)
            # store fracture center
            frac.fracture_center = origin
            # plane for fracture
            plane = InclinePlane(origin, boxlength)
            # randomly generate radius(rx)
            radius = FractureSize(size_dist, radius_min, radius_max)
            # randomly generate aspect ratio
            aspect_ratio = random.randint(aspect_min, aspect_max)
            # calculate r_y
            ry = radius / aspect_ratio
            # add layer with color
            rs.AddLayer(layer_name, rs.CreateColor(0, 255, 0))
            # make current layer
            rs.CurrentLayer(layer_name)
            # draw fracture
            fracture = rs.AddEllipse(plane, radius, ry)
            # write the plane, r_x and r_y to file for re-plotting
            file.write("\n" + str(plane[0]) + "," + str(plane[1]) + "," +
                       str(plane[2]) + "," + str(radius) + "," + str(ry))
            # make fracture a surface
            frac_surf = rs.AddPlanarSrf(fracture)
            # delete initial fracture drawn which is a curve
            rs.DeleteObject(fracture)
            # set fracture guid into its object
            frac.fracture_GUID = frac_surf[0]
            # append fracture guid to list
            fracture_list.append(frac)

    elif fracture_shape == 'polygon':
        # initialize list to store fractures
        fracture_list = []
        # write the shape type
        file.write('\npolygon\n')
        for i in range(num_frac):
            # name the layer
            layer_name = "FRACTURE" + str(i + 1)
            # an instance of fracture class
            frac = Fracture()
            # get farcture name
            frac.fracture_name = layer_name
            # randomly determine the sides of the polygon
            sides = random.randint(polysize_min, polysize_max)
            # theta in radian
            theta_rad = (2 * math.pi) / sides
            # theta in degree (interior angles)
            theta_deg = theta_rad * (180 / math.pi)
            # generate origin
            origin = GeneratePoint(boxlength)
            # save fracture center
            frac.fracture_center = origin
            # randomly generate radius(rx)
            radius = FractureSize(size_dist, radius_min, radius_max)
            # create a 3D point object which isn't visible to the rhino document
            pt_01 = rs.coerce3dvector(
                [radius + origin[0], origin[1], origin[2]])
            # empty list to store all points
            points = []
            # a rotation axis
            ax = rs.coerce3dvector([0, 0, 1])
            # loop to generate points for polygon vertices
            for j in range(sides):
                # rotation transform with rotation from the origin
                trans = rs.XformRotation2(theta_deg * j, ax, origin)
                # transform the original 3D point and append to list
                points.append(rs.PointTransform(pt_01, trans))
                if j == 0:
                    file.write(
                        str(rs.PointTransform(pt_01, trans)[0]) + "," +
                        str(rs.PointTransform(pt_01, trans)[1]) + "," +
                        str(rs.PointTransform(pt_01, trans)[2]) + ",")
                if j != 0:
                    file.write(
                        str(rs.PointTransform(pt_01, trans)[0]) + "," +
                        str(rs.PointTransform(pt_01, trans)[1]) + "," +
                        str(rs.PointTransform(pt_01, trans)[2]) + ",")
            # append the initial point to close the polygon
            points.append(pt_01)
            file.write(
                str(pt_01[0]) + "," + str(pt_01[1]) + "," + str(pt_01[2]) +
                ",")
            # create layer for fracture
            layer_name = "FRACTURE_" + str(i + 1)
            rs.AddLayer(layer_name, rs.CreateColor(0, 255, 0))
            rs.CurrentLayer(layer_name)
            # get GUID of created polygon
            polygon = rs.AddPolyline(points)
            # get the plane
            plane = InclinePlane(origin, boxlength)
            # transform the polygon to the plane
            cob = rs.XformChangeBasis(rs.WorldXYPlane(), plane)
            shear2d = rs.XformIdentity()
            shear2d[0, 2] = math.tan(math.radians(45.0))
            cob_inverse = rs.XformChangeBasis(plane, rs.WorldXYPlane())
            temp = rs.XformMultiply(shear2d, cob)
            xform = rs.XformMultiply(cob_inverse, temp)
            fracture = rs.TransformObjects(polygon, xform, False)
            # write to file
            #file.write(str(origin[0]) + "," + str(origin[1]) + "," + str(origin[2])+ "," )
            file.write(
                str(plane[0]) + "," + str(plane[1]) + "," + str(plane[2]) +
                "," + str(sides) + "\n")
            # make fracture a surface
            frac_surf = rs.AddPlanarSrf(fracture)
            # delete initial fracture drawn which is a curve
            rs.DeleteObject(fracture)
            # set fracture guid into its objects
            frac.fracture_GUID = frac_surf[0]
            # append fracture guid to list
            fracture_list.append(frac)
    # close file
    file.close()
    return fracture_list