예제 #1
0
    def __init__(self, node_in_features, edge_in_features, node_out_features,
                 edge_out_features):
        super(CriticNetwork_GCN, self).__init__()
        self.GCN1 = CensNet(node_in_features, edge_in_features,
                            node_out_features, edge_out_features)
        self.GCN2 = CensNet(node_out_features, edge_out_features,
                            node_out_features, edge_out_features)
        self.predict_v1 = torch.nn.Linear(node_out_features, node_out_features)
        self.predict_v2 = torch.nn.Linear(node_out_features, 1)

        self.saved_actions = []
        self.rewards = []
예제 #2
0
    def __init__(self, node_in_features, edge_in_features, node_out_features,
                 edge_out_features):
        super(Edgethick_Actor, self).__init__()
        self.GCN1 = CensNet(node_in_features, edge_in_features,
                            node_out_features, edge_out_features)
        self.GCN2 = CensNet(node_out_features, edge_out_features,
                            node_out_features, edge_out_features)
        self.predict_v1 = torch.nn.Linear(node_out_features, node_out_features)
        self.mean = torch.nn.Linear(4 * node_out_features, 1)
        self.std = torch.nn.Linear(4 * node_out_features, 1)

        self.saved_actions = []
예제 #3
0
    def __init__(self, node_in_features, edge_in_features, node_out_features,
                 edge_out_features):
        super(GCN_fund_model, self).__init__()
        self.GCN1 = CensNet(node_in_features, edge_in_features,
                            node_out_features, edge_out_features)
        self.GCN2 = CensNet(node_out_features, edge_out_features,
                            node_out_features, edge_out_features)
        self.predict_v1 = torch.nn.Linear(node_out_features, node_out_features)
        self.predict_v2 = torch.nn.Linear(node_out_features, 1)

        self.saved_actions = []
        self.rewards = []
        self.node_nums = []
예제 #4
0
    def __init__(self, node_in_features, edge_in_features, node_out_features,
                 edge_out_features):
        super(Select_node1_model, self).__init__()
        self.GCN1 = CensNet(node_in_features, edge_in_features,
                            node_out_features, edge_out_features)
        self.GCN2 = CensNet(node_out_features, edge_out_features,
                            node_out_features, edge_out_features)
        self.predict_v1 = torch.nn.Linear(node_out_features, node_out_features)
        self.predict_v2 = torch.nn.Linear(node_out_features, 1)

        self.b1 = torch.nn.BatchNorm1d(node_out_features)
        self.b2 = torch.nn.BatchNorm1d(edge_out_features)
        self.b3 = torch.nn.BatchNorm1d(node_out_features)
        self.b4 = torch.nn.BatchNorm1d(edge_out_features)

        self.saved_actions = []
        self.rewards = []
예제 #5
0
    def __init__(self, node_in_features, edge_in_features, node_out_features,
                 edge_out_features):
        super(X_Y_Actor, self).__init__()
        self.GCN1 = CensNet(node_in_features, edge_in_features,
                            node_out_features, edge_out_features)
        self.GCN2 = CensNet(node_out_features, edge_out_features,
                            node_out_features, edge_out_features)
        self.predict_v1 = torch.nn.Linear(node_out_features, node_out_features)

        self.mean = torch.nn.Linear(node_out_features, 2)
        self.std = torch.nn.Linear(node_out_features, 2)

        # self.b1 = torch.nn.BatchNorm1d(node_out_features)
        # self.b2 = torch.nn.BatchNorm1d(edge_out_features)
        # self.b3 = torch.nn.BatchNorm1d(node_out_features)
        # self.b4 = torch.nn.BatchNorm1d(edge_out_features)

        self.saved_actions = []