def __init__(self, node_in_features, edge_in_features, node_out_features, edge_out_features): super(CriticNetwork_GCN, self).__init__() self.GCN1 = CensNet(node_in_features, edge_in_features, node_out_features, edge_out_features) self.GCN2 = CensNet(node_out_features, edge_out_features, node_out_features, edge_out_features) self.predict_v1 = torch.nn.Linear(node_out_features, node_out_features) self.predict_v2 = torch.nn.Linear(node_out_features, 1) self.saved_actions = [] self.rewards = []
def __init__(self, node_in_features, edge_in_features, node_out_features, edge_out_features): super(Edgethick_Actor, self).__init__() self.GCN1 = CensNet(node_in_features, edge_in_features, node_out_features, edge_out_features) self.GCN2 = CensNet(node_out_features, edge_out_features, node_out_features, edge_out_features) self.predict_v1 = torch.nn.Linear(node_out_features, node_out_features) self.mean = torch.nn.Linear(4 * node_out_features, 1) self.std = torch.nn.Linear(4 * node_out_features, 1) self.saved_actions = []
def __init__(self, node_in_features, edge_in_features, node_out_features, edge_out_features): super(GCN_fund_model, self).__init__() self.GCN1 = CensNet(node_in_features, edge_in_features, node_out_features, edge_out_features) self.GCN2 = CensNet(node_out_features, edge_out_features, node_out_features, edge_out_features) self.predict_v1 = torch.nn.Linear(node_out_features, node_out_features) self.predict_v2 = torch.nn.Linear(node_out_features, 1) self.saved_actions = [] self.rewards = [] self.node_nums = []
def __init__(self, node_in_features, edge_in_features, node_out_features, edge_out_features): super(Select_node1_model, self).__init__() self.GCN1 = CensNet(node_in_features, edge_in_features, node_out_features, edge_out_features) self.GCN2 = CensNet(node_out_features, edge_out_features, node_out_features, edge_out_features) self.predict_v1 = torch.nn.Linear(node_out_features, node_out_features) self.predict_v2 = torch.nn.Linear(node_out_features, 1) self.b1 = torch.nn.BatchNorm1d(node_out_features) self.b2 = torch.nn.BatchNorm1d(edge_out_features) self.b3 = torch.nn.BatchNorm1d(node_out_features) self.b4 = torch.nn.BatchNorm1d(edge_out_features) self.saved_actions = [] self.rewards = []
def __init__(self, node_in_features, edge_in_features, node_out_features, edge_out_features): super(X_Y_Actor, self).__init__() self.GCN1 = CensNet(node_in_features, edge_in_features, node_out_features, edge_out_features) self.GCN2 = CensNet(node_out_features, edge_out_features, node_out_features, edge_out_features) self.predict_v1 = torch.nn.Linear(node_out_features, node_out_features) self.mean = torch.nn.Linear(node_out_features, 2) self.std = torch.nn.Linear(node_out_features, 2) # self.b1 = torch.nn.BatchNorm1d(node_out_features) # self.b2 = torch.nn.BatchNorm1d(edge_out_features) # self.b3 = torch.nn.BatchNorm1d(node_out_features) # self.b4 = torch.nn.BatchNorm1d(edge_out_features) self.saved_actions = []