예제 #1
0
def get_iso_integral_flux_map(iso_ascii_file, e_min, e_max, nside=512):
    """Returns a isotropic map of the integral IGRB between emin and emax from 
       'iso_P8R2_SOURCE_V6_v06.txt' file.

       iso_ascii_file: str
           Ascii file found here 
           https://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html
       emin: float
           minimum energy of the bin [MeV]
       emax: float
           maximum energy of the bin [MeV]
       nside: int
           healpix nside parameter
    """
    isofile = os.path.join(GRATOOLS_CONFIG, 'models', 
                           'iso_P8R2_ULTRACLEANVETO_V6_v06.txt')
    from GRATools.utils.gFTools import iso_parse
    e, difflux, diffluxerr = iso_parse(iso_ascii_file)
    index = np.where((e>e_min)*(e<e_max))
    erange = e[index]
    frange = difflux[index]
    f_e = xInterpolatedUnivariateSplineLinear(erange, frange)
    intf = f_e.integral(e_min, e_max)
    logger.info('Isotropic Bkg %e [cm-2s-1]'%intf)
    npix = hp.nside2npix(nside)
    intiso_map = np.full(npix, intf)
    return intiso_map
예제 #2
0
파일: gFTools.py 프로젝트: nmik/GRATools
def get_crbkg(txt_file):
    """Get the CR residual bkg (spline) as a function of the energy
       from the txt files.

       txt_file : str
           It must contain 2 columns: the first one with the energy, the second
           one with the cosmic ray residual background flux.
    """
    logger.info('Getting CR residual bkg from file %s'%txt_file)
    f = open(txt_file, 'r')
    _bkg, _en = [], []
    for line in f:
        try:
            e, bkg = [float(item) for item in line.split()]
            _en.append(e)
            _bkg.append(bkg)
        except:
            pass 
    fmt = dict(xname='Energy', xunits='MeV', 
               yname='E$^{2}$ x CR Residual flux', 
               yunits='MeV cm$^{-2}$ s$^{-1}$ sr$^{-1}$')
    crbkg = xInterpolatedUnivariateSplineLinear(np.array(_en), np.array(_bkg),\
                                                  **fmt)
    f.close()
    return crbkg
예제 #3
0
파일: gPolSpice.py 프로젝트: nmik/GRATools
def get_cl_model_SFG_spline(model_file, log=True):
    """ Returns a spline of the model with which to fit the APS.

        model_file : str
           ascii file with 2 columns: the first with multiples and the 
           second for Cl.
        log : bool
           if True (default) the interpolation of the spline is done in 
           logarithmic space.
    """
    f = open(model_file, 'r')
    _l, _cl = [], []
    for line in f:
        try:
            l, cl = [float(item) for item in line.split()]
            _l.append(l)
            _cl.append(cl)
        except:
            pass
    _l = np.array(_l)
    _cl = np.array(_cl)
    if log==True:
        model_spline = xInterpolatedUnivariateLogSpline(_l, _cl)
    else:
        model_spline = xInterpolatedUnivariateSplineLinear(_l, _cl)
    return model_spline
예제 #4
0
def get_psf(psf_file, show=False):
    """Get the PSF from the fits file created by gtpsf
    """
    hdu_list = pf.open(psf_file)
    _th = np.radians(hdu_list['THETA'].data.field('Theta'))
    _en = hdu_list['PSF'].data.field('ENERGY')
    _psf = hdu_list['PSF'].data.field('PSF')
    fmt = dict(yname='Theta', yunits='rad', xname='Energy',
               xunits='MeV', zname='PSF')
    psf_th_e = xInterpolatedBivariateSplineLinear(_en, _th, _psf, **fmt)
    hdu_list.close()
    if show == True:
        for e in _en:
            psf_th = psf_th_e.vslice(e)
            fmt = dict(xname='cos(th)', xunits='', yname='psf[cos(th)]',\
                           yunits='')
            _psfxsin = xInterpolatedUnivariateSplineLinear(psf_th.x, \
                                       psf_th.y*np.sin(psf_th.x), **fmt)
            plt.plot(np.degrees(psf_th.x), psf_th.y, label='%.2f'%e)
            print 'INT(E=%.2f) ='%e, 2*np.pi*_psfxsin.integral(0, \
                                                      np.amax(psf_th.x[:-2]))
        plt.yscale('log')
        plt.legend()
        plt.show()
    return psf_th_e
예제 #5
0
def build_wbeam(psf, _l, out_file):
    """Calculate the Wbeam(l, E) and return a bivariate slpine.
    """
    out_txt = open(out_file, 'w')
    _en = psf.x
    _wb = []
    energy = str(list(_en)).replace('[','').replace(']','').replace(', ', ' ')
    out_txt.write('l\t%s\n'%energy)
    for e in _en:
        wb_e = np.array([])
        psf_th = psf.vslice(e)
        for l in _l:
            pl_th = get_pl_vs_th(l, np.cos(psf_th.x))
            fmt = dict(xname='th', xunits='rad', yname='convolution', \
                           yunits='MeV')
            _conv = xInterpolatedUnivariateSplineLinear(psf_th.x, \
                                    np.sin(psf_th.x)*psf_th.y*pl_th, **fmt)
            wb_e_l = min(1., 2*np.pi*(_conv.integral(np.amin(psf_th.x), \
                                                         np.amax(psf_th.x))))
            print 'Wbeam(%i, %.2f)'%(l, e), wb_e_l
            wb_e = np.append(wb_e, [wb_e_l])
        _wb.append(wb_e)
    _wb = np.array(_wb)
    fmt = dict(xname='$l$', xunits='', yname='Energy',
                   yunits='MeV', zname='W$_{beam}$(E,$l$)')
    wbeam = xInterpolatedBivariateSplineLinear(_l, _en, _wb.T, **fmt)
    for i, l in enumerate(_l):
        wb = str(list(_wb.T[i])).replace('[','').replace(']','').\
            replace(', ', ' ')
        out_txt.write('%i\t%s\n'%(l, wb))
    out_txt.close()
    return wbeam
예제 #6
0
def get_ref_igrb_spline():
    """Returns a spline of the IGRB measurement as a funcion of the energy.
       this curve is used as initial guess of the constant parameter of the
       poissonian fit.
    """
    f = open(os.path.join(GRATOOLS_CONFIG,'ascii/IGRB_guess.txt'), 'r')
    x = np.array([float(l.split()[0]) for l in f])
    f = open(os.path.join(GRATOOLS_CONFIG,'ascii/IGRB_guess.txt'), 'r')
    y = np.array([float(l.split()[1]) for l in f])
    fmt = dict(xname='Energy' , xunits='MeV', yname='IGRB', 
               yunits='MeV$^{-1}$/cm$^{-2}$/s')
    igrb = xInterpolatedUnivariateSplineLinear(x, y, **fmt)
    return igrb
예제 #7
0
def main():
    """
    crbkg_PSF1_file =  os.path.join(GRATOOLS_CONFIG, 
                                    'ascii/p8r2_bkg_flux_t8.txt')
    crbkg_PSF1 = get_crbkg(crbkg_PSF1_file)
    crbkg_PSF1.plot(show=False)
    x = crbkg_PSF1.x
    xx = x**2
    print x
    y1 =  crbkg_PSF1.y
    crbkg_PSF2_file =  os.path.join(GRATOOLS_CONFIG, 
                                    'ascii/p8r2_bkg_flux_t16.txt')
    crbkg_PSF2 = get_crbkg(crbkg_PSF2_file)
    crbkg_PSF2.plot(show=False)
    y2 =  crbkg_PSF2(x)
    crbkg_PSF3_file =  os.path.join(GRATOOLS_CONFIG, 
                                    'ascii/p8r2_bkg_flux_t32.txt')
    crbkg_PSF3 = get_crbkg(crbkg_PSF3_file)
    crbkg_PSF3.plot(show=False)
    y3 =  crbkg_PSF2(x)
    y = (y1/x+y2/x+y3/x)*x
    print y
    plt.yscale('log')
    plt.xscale('log')
    plt.show()
    
    fore_files_list = [os.path.join(GRATOOLS_CONFIG, \
                                        'fits/gll_iem_v06_hp512_146647.fits'),
                       os.path.join(GRATOOLS_CONFIG, \
                                        'fits/gll_iem_v06_hp512_200561.fits'),
                       os.path.join(GRATOOLS_CONFIG, \
                                        'fits/gll_iem_v06_hp512_274296.fits'),
                       os.path.join(GRATOOLS_CONFIG, \
                                        'fits/gll_iem_v06_hp512_375138.fits'),
                       os.path.join(GRATOOLS_CONFIG, \
                                        'fits/gll_iem_v06_hp512_513056.fits'),
                       ]
    e_min, e_max = 524807.00, 575439.00
    get_foreground_integral_flux_map(fore_files_list, e_min, e_max)"""
    from scipy.optimize import curve_fit
    ClFORE_FILE = os.path.join(GRATOOLS_OUT, 'fore_polspicecls.txt')
    min1, emax1, clsfore = clfore_parse(ClFORE_FILE)
    l = np.arange(len(clsfore[0]))
    clsfore_spline = xInterpolatedUnivariateSplineLinear(l, clsfore[0])
    clsfore_spline.plot(show=False)
    plt.xscale('log')
    plt.yscale('log')
    plt.show()
예제 #8
0
def get_psf_ref(psf_file):
    """get the published curve of the psf as a func of the energy
    """
    f = open(psf_file, 'r')
    _e, _ang = [], []
    for line in f:
        try:
            e, ang = [float(item) for item in line.split()]
            _e.append(e)
            _ang.append(ang)
        except:
            pass 
    fmt = dict(xname='Energy', xunits='MeV', yname='Containment Angle',
               yunits='deg')
    psf = xInterpolatedUnivariateSplineLinear(np.array(_e), np.array(_ang),\
                                                  **fmt)
    f.close()
    return psf
예제 #9
0
def get_crbkg(txt_file):
    """Get the CR residual bkg (spline) as a function of the energy
       from the txt files
    """
    logger.info('Getting CR residual bkg from file %s' % txt_file)
    f = open(txt_file, 'r')
    _bkg, _en = [], []
    for line in f:
        try:
            e, bkg = [float(item) for item in line.split()]
            _en.append(e)
            _bkg.append(bkg)
        except:
            pass
    fmt = dict(xname='Energy',
               xunits='MeV',
               yname='E$^{2}$ x CR Residual flux',
               yunits='MeV cm$^{-2}$ s$^{-1}$ sr$^{-1}$')
    crbkg = xInterpolatedUnivariateSplineLinear(np.array(_en), np.array(_bkg),\
                                                  **fmt)
    f.close()
    return crbkg