time_domain_features = eeg_features_exct.extractTimeDomainAll( eeg_filtered) freq_domain_features = eeg_features_exct.extractFrequencyDomainAll( eeg_filtered) plf_features = eeg_features_exct.extractPLFFeatures( eeg_filtered) power_features = eeg_features_exct.extractPowerFeatures( eeg_filtered) eeg_features = np.concatenate([ time_domain_features, freq_domain_features, plf_features, power_features ]) # extract cvx of eda and time domain of ppg to check whether the inputs are not disorted cvx_features = eda_features_exct.extractCVXEDA(eda) scr_features = eda_features_exct.extractSCRFeatures( eda) ppg_time = ppg_features_exct.extractTimeDomain(ppg) eda_features = np.concatenate([ cvx_features, eda_features_exct.extractMFCCFeatures( eda, min_len=min_eda_len), scr_features ]) ppg_features = np.concatenate([ ppg_time, ppg_features_exct.extractFrequencyDomain(ppg), ppg_features_exct.extractNonLinear(ppg) ]) # extract ecg resp features ecg_resp_time_domain = ecg_resp_features_exct.extractTimeDomain( ecg_resp)
from GSR.GSRFeatures import PPGFeatures, EDAFeatures from Conf import Settings as set import pandas as pd data = pd.read_csv("..\\Data\\Dummy\\GSR_sample.csv", header=[0, 1]) #PPG ppg = data["GSR_PPG_A13_CAL"].iloc[0:900].values ppgExtract = PPGFeatures(set.FS_GSR) print(ppgExtract.extractTimeDomain(ppg.flatten())) print(ppgExtract.extractFrequencyDomain(ppg.flatten())) print(ppgExtract.extractNonLinear(ppg.flatten())) #EDA eda = data["GSR_GSR_Skin_Conductance_CAL"].iloc[0:900].values edaExtract = EDAFeatures(set.FS_GSR) print(edaExtract.extractMFCCFeatures(ppg.flatten())) print(edaExtract.extractSCRFeatures(ppg.flatten()))