예제 #1
0
    def computeFaces(self):
        geometry = self.geometry
        quad = self.quad
        ngroup = self.ngroupS + self.ngroupM
        premeshFaces = self.premeshFaces
        groupIntPtr = self.groupIntPtr
        groupInts = self.groupInts
        groupSplitPtr = self.groupSplitPtr
        groupSplits = self.groupSplits
        nint = groupIntPtr[-1,-1]
        nsplit = groupSplitPtr[-1,-1]

        iList = 0
        for k in range(len(geometry.comps)):
            comp = geometry.comps[geometry.keys[k]]
            for f in range(len(comp.Ks)):
                verts,edges,edge_group,edgeLengths = premeshFaces[iList]
                nvert = PSMlib.countintersectionverts(edges.shape[0], ngroup, edge_group, groupIntPtr, groupSplitPtr)
                verts = PSMlib.computeintersectionverts(verts.shape[0], edges.shape[0], ngroup, nint, nsplit, nvert + verts.shape[0], verts, edges, edge_group, groupIntPtr, groupInts, groupSplitPtr, groupSplits)
                quad.importVertsNEdges(verts, edges)
                quad.removeDuplicateVerts()
                quad.splitEdges()
                quad.removeDuplicateEdges()
                premeshFaces[iList][0] = quad.verts
                premeshFaces[iList][1] = quad.edges
                iList += 1
예제 #2
0
파일: airframe.py 프로젝트: nbons/GeoMACH
    def computeFaces(self):
        geometry = self.geometry
        quad = self.quad
        ngroup = self.ngroupS + self.ngroupM
        premeshFaces = self.premeshFaces
        groupIntPtr = self.groupIntPtr
        groupInts = self.groupInts
        groupSplitPtr = self.groupSplitPtr
        groupSplits = self.groupSplits
        nint = groupIntPtr[-1, -1]
        nsplit = groupSplitPtr[-1, -1]

        iList = 0
        for comp in geometry.comps.values():
            for face in comp.faces.values():
                verts, edges, edge_group, edgeLengths = premeshFaces[iList]
                nvert = PSMlib.countintersectionverts(edges.shape[0], ngroup,
                                                      edge_group, groupIntPtr,
                                                      groupSplitPtr)
                verts = PSMlib.computeintersectionverts(
                    verts.shape[0], edges.shape[0], ngroup, nint, nsplit,
                    nvert + verts.shape[0], verts, edges, edge_group,
                    groupIntPtr, groupInts, groupSplitPtr, groupSplits)
                quad.importVertsNEdges(verts, edges)
                quad.removeDuplicateVerts()
                quad.splitEdges()
                quad.removeDuplicateEdges()
                premeshFaces[iList][0] = quad.verts
                premeshFaces[iList][1] = quad.edges
                iList += 1
예제 #3
0
    def computeMembers(self):
        nmem = self.nmem
        geometry = self.geometry
        oml0 = geometry.oml0
        groupIntPtr = self.groupIntPtr
        groupInts = self.groupInts
        groupSplitPtr = self.groupSplitPtr
        groupSplits = self.groupSplits
        quad = self.quad
        ngroup = self.ngroupS + self.ngroupM
        nint = groupIntPtr[-1,-1]
        nsplit = groupSplitPtr[-1,-1]

        nodesInt0 = []
        nodesFlt0 = []
        quads0 = []
        nnode0 = [0]
        for imem in range(nmem):
            print 'Computing internal members:', self.memberNames[imem]
            edges, edge_group = PSMlib.computememberedges(imem+1, nmem, self.mem_group)
            quad.importEdges(edges)
            verts, edges = quad.verts, quad.edges
            nvert = PSMlib.countintersectionverts(edges.shape[0], ngroup, edge_group, groupIntPtr, groupSplitPtr)
            verts = PSMlib.computeintersectionverts(verts.shape[0], edges.shape[0], ngroup, nint, nsplit, nvert + verts.shape[0], verts, edges, edge_group, groupIntPtr, groupInts, groupSplitPtr, groupSplits)
            quad.importVertsNEdges(verts, edges)
            nodes, quads = quad.mesh(self.maxL, self.memEdgeLengths[imem,:,:])
            nodesInt, nodesFlt = PSMlib.computemembernodes(imem+1, nmem, nodes.shape[0], self.membersInt, self.membersFlt, nodes)
            nodesInt0.append(nodesInt)
            nodesFlt0.append(nodesFlt)
            quads0.append(quads)
            nnode0.append(nnode0[-1] + nodes.shape[0])

        nodesInt = numpy.array(numpy.vstack(nodesInt0),order='F')
        nodesFlt = numpy.array(numpy.vstack(nodesFlt0),order='F')
        nnode = nodesInt.shape[0]

        for k in range(len(geometry.comps)):
            comp = geometry.comps[geometry.keys[k]]
            for f in range(len(comp.Ks)):
                ni, nj = comp.Ks[f].shape
                idims, jdims = self.faceDims[k][f]
                PSMlib.computememberlocalcoords(k+1, f+1, ni, nj, nnode, idims, jdims, comp.Ks[f]+1, nodesInt, nodesFlt)

        linW = numpy.linspace(0,nnode-1,nnode)
        B0 = scipy.sparse.csr_matrix((nnode,oml0.C.shape[0]))
        for src in range(4):
            W = scipy.sparse.csr_matrix((nodesFlt[:,src,0],(linW,linW)))
            for surf in range(oml0.nsurf):
                npts = PSMlib.countmembers(surf+1, src+1, nnode, nodesInt)
                if npts is not 0:
                    inds, P, Q = PSMlib.computememberproj(surf+1, src+1, nnode, npts, nodesInt, nodesFlt)
                    Ta = numpy.ones(npts)
                    Ti = inds - 1
                    Tj = numpy.linspace(0,npts-1,npts)
                    T = scipy.sparse.csr_matrix((Ta,(Ti,Tj)),shape=(nnode,npts))

                    mu, mv = oml0.edgeProperty(surf,1)
                    for u in range(mu):
                        for v in range(mv):
                            oml0.C[oml0.getIndex(surf,u,v,1),:3] = [u/(mu-1), v/(mv-1), 0]
                    oml0.computePointsC()

                    s,u,v = oml0.evaluateProjection(P, [surf], Q)
                    B = oml0.evaluateBases(s, u, v)
                    B0 = B0 + W.dot(T.dot(B))

        self.meshM = [B0, quads0, nnode0]
예제 #4
0
    def meshStructure(self, members, lengths):
        oml0 = self.oml0

        nmem = len(members)
        faces = -numpy.ones((nmem,4,2),int,order='F')
        coords = numpy.zeros((nmem,4,2,2,3),order='F')
        for imem in range(nmem):
            key = members.keys()[imem]
            for icontr in range(len(members[key])):
                faces[imem,icontr,0] = self.inds[members[key][icontr][0]]
                faces[imem,icontr,1] = members[key][icontr][1]
                coords[imem,icontr,0,0,:] = members[key][icontr][2]
                coords[imem,icontr,1,0,:] = members[key][icontr][3]
                coords[imem,icontr,0,1,:] = members[key][icontr][4]
                coords[imem,icontr,1,1,:] = members[key][icontr][5]

        surfs = numpy.linspace(0,oml0.nsurf-1,oml0.nsurf)
        s = numpy.zeros(4*oml0.nsurf)
        s[0::4] = surfs
        s[1::4] = surfs
        s[2::4] = surfs
        s[3::4] = surfs
        u = numpy.zeros(4*oml0.nsurf)
        u[1::4] = 1.
        u[3::4] = 1.
        v = numpy.zeros(4*oml0.nsurf)
        v[2::4] = 1.
        v[3::4] = 1.
        quadsS = numpy.zeros((oml0.nsurf,4),order='F')
        quadsS[:,0] = 4*surfs + 0
        quadsS[:,1] = 4*surfs + 1
        quadsS[:,2] = 4*surfs + 3
        quadsS[:,3] = 4*surfs + 2
        B = oml0.evaluateBases(s,u,v)
        nodesS = B.dot(oml0.C[:,:3])
        oml0.export.write2TecQuads('john.dat',nodesS,quadsS)

        #oml0.C[:,:] = -1.0
        #for k in range(len(self.comps)):
        #    c = self.keys[k]
        #    comp = self.comps[c]
        #    for f in range(len(comp.Ks)):
        #        ni, nj = comp.Ks[f].shape
        #        for i in range(ni):
        #            for j in range(nj):
        #                surf = comp.Ks[f][i,j]
        #                mu, mv = oml0.edgeProperty(surf,1)
        #                ugroup = oml0.edge_group[abs(oml0.surf_edge[surf,0,0])-1]
        #                vgroup = oml0.edge_group[abs(oml0.surf_edge[surf,1,0])-1]
        #                mu = oml0.group_m[ugroup-1]
        #                mv = oml0.group_m[vgroup-1]
        #                for u in range(mu):
        #                    for v in range(mv):
        #                        oml0.C[oml0.getIndex(surf,u,v,1),:3] = [u/(mu-1), v/(mv-1), 0]

        oml0.C[:,:] = -1.0
        for surf in range(oml0.nsurf):
            mu, mv = oml0.edgeProperty(surf,1)
            ugroup = oml0.edge_group[abs(oml0.surf_edge[surf,0,0])-1]
            vgroup = oml0.edge_group[abs(oml0.surf_edge[surf,1,0])-1]
            mu = oml0.group_m[ugroup-1]
            mv = oml0.group_m[vgroup-1]
            for u in range(mu):
                for v in range(mv):
                    oml0.C[oml0.getIndex(surf,u,v,1),:3] = [u/(mu-1), v/(mv-1), 0]
                    print u/(mu-1), v/(mv-1)

        oml0.computePointsC()
        #oml0.export.write2TecQuads('john2.dat',nodesM,quadsM)
        oml0.write2Tec('test2')
        oml0.write2TecC('test2')

        self.computePoints()
        print oml0.C[oml0.getIndex(147,-1, 0,1),:3]
        print oml0.C[oml0.getIndex(144,-1,-1,1),:3]
        print oml0.C[oml0.getIndex( 49, 0, 0,1),:3]


        s = numpy.zeros(4*nmem)
        P = numpy.zeros((4*nmem,3),order='F')
        Q = numpy.zeros((4*nmem,3),order='F')
        w = numpy.zeros((4*nmem,4),order='F')
        mems = numpy.linspace(0,nmem-1,nmem)
        Q[:,2] = 1.
        Bs = []
        ws = []
        for icontr in range(4):
            for imem in range(nmem):
                k = faces[imem,icontr,0]
                f = faces[imem,icontr,1]
                c = self.keys[k]
                comp = self.comps[c]
                ni, nj = comp.Ks[f].shape
                for i in range(2):
                    for j in range(2):
                        u, v = coords[imem,icontr,i,j,:2]
                        ii = int(numpy.floor(u*ni))
                        jj = int(numpy.floor(v*nj))
                        s[4*imem+2*j+i] = comp.Ks[f][ii,jj]
                        P[4*imem+2*j+i,0] = u*ni - ii
                        P[4*imem+2*j+i,1] = v*nj - jj
                        w[4*imem+2*j+i,icontr] = coords[imem,icontr,i,j,2]
            surf,u,v = oml0.evaluateProjection(P, Q=Q)
            Bs.append(oml0.evaluateBases(surf, u, v))


        quadsM = numpy.zeros((nmem,4),order='F')
        quadsM[:,0] = 4*mems + 0
        quadsM[:,1] = 4*mems + 1
        quadsM[:,2] = 4*mems + 3
        quadsM[:,3] = 4*mems + 2
        nodesM = numpy.zeros((4*nmem,3),order='F')
        for icontr in range(4):
            for k in range(3):
                nodesM[:,k] += w[:,icontr] * Bs[icontr].dot(oml0.C[:,k])
            
        oml0.export.write2TecQuads('john2.dat',nodesM,quadsM)

        exit()



        Ps = numpy.zeros((oml0.nsurf,3,3,3),order='F')
        for s in range(oml0.nsurf):
            for i in range(3):
                for j in range(3):
                    Ps[s,i,j] = oml0.evaluatePoint(s,i/2.0,j/2.0)[:3]
        nvertS,ngroupS,surf_vert,surf_group = PUBSlib.initializeconnectivities(oml0.nsurf,1e-13,1e-5,Ps)

        nvertM,ngroupM,mem_vert,mem_group = PSMlib.computemembertopology(nmem, faces, coords)
        mem_group[:,:,:] += ngroupS
        ngroup = ngroupS + ngroupM

        nint = PSMlib.countfaceintersections(nmem, coords)
        intFaces, intCoords = PSMlib.computefaceintersections(nmem, nint, faces, coords)

        groupIntCount = numpy.zeros(ngroup,int)
        meshesS = []
        for k in range(len(self.comps)):
            c = self.keys[k]
            comp = self.comps[c]
            meshes = []
            for f in range(len(comp.Ks)):
                ni, nj = comp.Ks[f].shape
                nedge = PSMlib.countfaceedges(k, f, ni, nj, nint, intFaces)
                edges, edge_group = PSMlib.computefaceedges(k, f, ni, nj, oml0.nsurf, nint, nmem, nedge, comp.Ks[f], surf_group, mem_group, intFaces, intCoords)
                mesh = QuadMesh(0.2,edges)
                mesh.computeIntersections()
                mesh.computeDivisions()
                mesh.deleteDuplicateVerts()
                groupIntCount = PSMlib.countgroupintersections(mesh.verts.shape[0], mesh.edges.shape[0], ngroup, mesh.verts, mesh.edges, edge_group, groupIntCount)
                meshes.append([mesh,edge_group])
            meshesS.append(meshes)

        meshesM = []
        for imem in range(nmem):
            edges, edge_group = PSMlib.computememberedges(imem+1, nmem, mem_group)
            mesh = QuadMesh(1e6,edges)
            meshesM.append([mesh,edge_group])

        groupIntPtr = PSMlib.computegroupintptr(ngroup, groupIntCount)
        nint = groupIntPtr[-1,-1]
        groupInts = numpy.zeros(nint)
        for k in range(len(self.comps)):
            c = self.keys[k]
            comp = self.comps[c]
            for f in range(len(comp.Ks)):
                mesh, edge_group = meshesS[k][f]
                groupInts = PSMlib.computegroupintersections(mesh.verts.shape[0], mesh.edges.shape[0], ngroup, nint, mesh.verts, mesh.edges, edge_group, groupIntPtr, groupInts)
                #print groupInts

        for k in range(len(self.comps)):
            c = self.keys[k]
            comp = self.comps[c]
            for f in range(len(comp.Ks)):
                mesh, edge_group = meshesS[k][f]
                nvert = PSMlib.countintersectionverts(mesh.edges.shape[0], ngroup, edge_group, groupIntPtr)
                mesh.verts = PSMlib.computeintersectionverts(mesh.verts.shape[0], mesh.edges.shape[0], ngroup, nint, nvert + mesh.verts.shape[0], mesh.verts, mesh.edges, edge_group, groupIntPtr, groupInts)
                print 'QM1', k, f
                mesh.mesh()
                #edges[:,:,0] *= lengths[k,0]
                #edges[:,:,1] *= lengths[k,1]
                if k==1 and f==0 and 0:
                    import pylab
                    mesh.plot(111,pt=False,pq=False)
                    pylab.show()
                    exit()

        for imem in range(nmem):
            mesh, edge_group = meshesM[imem]
            nvert = PSMlib.countintersectionverts(mesh.edges.shape[0], ngroup, edge_group, groupIntPtr)
            mesh.verts = PSMlib.computeintersectionverts(mesh.verts.shape[0], mesh.edges.shape[0], ngroup, nint, nvert + mesh.verts.shape[0], mesh.verts, mesh.edges, edge_group, groupIntPtr, groupInts)
            print 'QM2', imem
            mesh.mesh()
            if 0:
                import pylab
                mesh.plot(111,pt=False,pq=False)
                pylab.show()
                exit()
            meshesM.append([mesh,edge_group])

        oml0.C[:,:] = -1.0
        for k in range(len(self.comps)):
            c = self.keys[k]
            comp = self.comps[c]
            for f in range(len(comp.Ks)):
                ni, nj = comp.Ks[f].shape
                for i in range(ni):
                    for j in range(nj):
                        surf = comp.Ks[f][i,j]
                        mu, mv = oml0.edgeProperty(surf,1)
                        for u in range(mu):
                            uu = u/(mu-1)
                            for v in range(mv):
                                vv = v/(mv-1)
                                oml0.C[oml0.getIndex(surf,u,v,1),:3] = [(uu+i)/ni, (vv+j)/nj, 0]
        oml0.computePointsC()
        #oml0.write2Tec('test2')
        #oml0.write2TecC('test2')
        #exit()

        Bs = []
        quads = []
        nquad0 = 0
        for k in range(len(self.comps)):
            c = self.keys[k]
            comp = self.comps[c]
            for f in range(len(comp.Ks)):
                mesh, edge_group = meshesS[k][f]
                ni, nj = comp.Ks[f].shape
                print mesh.verts.shape[0]
                P0, surfs, Q = PSMlib.computeprojtninputs(mesh.verts.shape[0], ni, nj, mesh.verts, comp.Ks[f])
                surf,u,v = oml0.evaluateProjection(P0, comp.Ks[f].flatten(), Q)
                Bs.append(oml0.evaluateBases(surf,u,v))
                quads.append(nquad0 + mesh.quads - 1)
                #quads.append(mesh.quads - 1)
                nquad0 += mesh.verts.shape[0]

        self.computePoints()

        #i = 0
        #for k in range(len(self.comps)):
        #    c = self.keys[k]
        #    comp = self.comps[c]
        #    for f in range(len(comp.Ks)):
        #        P = Bs[i].dot(oml0.C[:,:3])
        #        oml0.export.write2TecQuads('data'+str(k)+'-'+str(f)+'.dat',P,quads[i]-1)
        #        i += 1

        import scipy.sparse
        B = scipy.sparse.vstack(Bs)
        P = B.dot(oml0.C[:,:3])
        quads = numpy.vstack(quads)
        oml0.export.write2TecQuads('john.dat',P,quads)#mesh.quads-1)
예제 #5
0
파일: airframe.py 프로젝트: nbons/GeoMACH
    def computeMembers(self):
        nmem = self.nmem
        geometry = self.geometry
        bse = geometry._bse
        groupIntPtr = self.groupIntPtr
        groupInts = self.groupInts
        groupSplitPtr = self.groupSplitPtr
        groupSplits = self.groupSplits
        quad = self.quad
        ngroup = self.ngroupS + self.ngroupM
        nint = groupIntPtr[-1, -1]
        nsplit = groupSplitPtr[-1, -1]
        nsurf = bse._num['surf']
        ncp = bse._size['cp_str']

        nodesInt0 = []
        nodesFlt0 = []
        quads0 = []
        nnode0 = [0]
        mem0 = []
        ucoord0 = []
        vcoord0 = []
        for imem in range(nmem):
            print 'Computing internal members:', self.memberNames[imem]
            edges, edge_group = PSMlib.computememberedges(
                imem + 1, nmem, self.mem_group)
            quad.importEdges(edges)
            verts, edges = quad.verts, quad.edges
            nvert = PSMlib.countintersectionverts(edges.shape[0], ngroup,
                                                  edge_group, groupIntPtr,
                                                  groupSplitPtr)
            verts = PSMlib.computeintersectionverts(
                verts.shape[0], edges.shape[0], ngroup, nint, nsplit,
                nvert + verts.shape[0], verts, edges, edge_group, groupIntPtr,
                groupInts, groupSplitPtr, groupSplits)
            quad.importVertsNEdges(verts, edges)
            nodes, quads = quad.mesh(self.maxL,
                                     self.memEdgeLengths[imem, :, :])
            nodesInt, nodesFlt = PSMlib.computemembernodes(
                imem + 1, nmem, nodes.shape[0], self.membersInt,
                self.membersFlt, nodes)
            nodesInt0.append(nodesInt)
            nodesFlt0.append(nodesFlt)
            quads0.append(quads)
            nnode0.append(nnode0[-1] + nodes.shape[0])
            P0, Q = PSMlib.computesurfaceprojections(nodes.shape[0], nodes)
            mem0.append(imem * numpy.ones(P0.shape[0]))
            ucoord0.append(P0[:, 0])
            vcoord0.append(P0[:, 1])

        nodesInt = numpy.array(numpy.vstack(nodesInt0), order='F')
        nodesFlt = numpy.array(numpy.vstack(nodesFlt0), order='F')
        nnode = nodesInt.shape[0]

        for comp in geometry.comps.values():
            for face in comp.faces.values():
                ni, nj = face._num_surf['u'], face._num_surf['v']
                surf_indices = face._surf_indices
                idims, jdims = self.faceDims[comp._name][face._name]
                PSMlib.computememberlocalcoords(comp._num + 1, face._num + 1,
                                                ni, nj, nnode, idims, jdims,
                                                surf_indices + 1, nodesInt,
                                                nodesFlt)

        linW = numpy.linspace(0, nnode - 1, nnode, dtype='int')
        B0 = scipy.sparse.csr_matrix((nnode, ncp))
        for src in range(4):
            W = scipy.sparse.csr_matrix((nodesFlt[:, src, 0], (linW, linW)))
            for surf in range(nsurf):
                npts = PSMlib.countmembers(surf + 1, src + 1, nnode, nodesInt)
                if npts is not 0:
                    inds, P, Q = PSMlib.computememberproj(
                        surf + 1, src + 1, nnode, npts, nodesInt, nodesFlt)
                    Ta = numpy.ones(npts)
                    Ti = inds - 1
                    Tj = numpy.linspace(0, npts - 1, npts)
                    T = scipy.sparse.csr_matrix((Ta, (Ti, Tj)),
                                                shape=(nnode, npts))

                    mu = bse.get_bspline_option('num_cp', surf, 'u')
                    mv = bse.get_bspline_option('num_cp', surf, 'v')
                    nu = bse.get_bspline_option('num_pt', surf, 'u')
                    nv = bse.get_bspline_option('num_pt', surf, 'v')

                    for u in range(mu):
                        for v in range(mv):
                            bse.vec['cp_str'](surf)[u, v, :] = [
                                u / (mu - 1), v / (mv - 1), 0
                            ]
                    for u in range(nu):
                        for v in range(nv):
                            bse.vec['pt_str'](surf)[u, v, :] = [
                                u / (nu - 1), v / (nv - 1), 0
                            ]

                    bse.compute_projection('temp', P, [surf], ndim=3)
                    B = bse.jac['d(temp)/d(cp_str)']
                    B0 = B0 + W * T * B

        bse.apply_jacobian('cp_str', 'd(cp_str)/d(cp)', 'cp')

        self.meshM = [B0, quads0, nnode0, mem0, ucoord0, vcoord0]
예제 #6
0
    def computeMembers(self):
        nmem = self.nmem
        geometry = self.geometry
        oml0 = geometry.oml0
        groupIntPtr = self.groupIntPtr
        groupInts = self.groupInts
        groupSplitPtr = self.groupSplitPtr
        groupSplits = self.groupSplits
        quad = self.quad
        ngroup = self.ngroupS + self.ngroupM
        nint = groupIntPtr[-1, -1]
        nsplit = groupSplitPtr[-1, -1]

        nodesInt0 = []
        nodesFlt0 = []
        quads0 = []
        nnode0 = [0]
        for imem in range(nmem):
            print 'Computing internal members:', self.memberNames[imem]
            edges, edge_group = PSMlib.computememberedges(
                imem + 1, nmem, self.mem_group)
            quad.importEdges(edges)
            verts, edges = quad.verts, quad.edges
            nvert = PSMlib.countintersectionverts(edges.shape[0], ngroup,
                                                  edge_group, groupIntPtr,
                                                  groupSplitPtr)
            verts = PSMlib.computeintersectionverts(
                verts.shape[0], edges.shape[0], ngroup, nint, nsplit,
                nvert + verts.shape[0], verts, edges, edge_group, groupIntPtr,
                groupInts, groupSplitPtr, groupSplits)
            quad.importVertsNEdges(verts, edges)
            nodes, quads = quad.mesh(self.maxL,
                                     self.memEdgeLengths[imem, :, :])
            nodesInt, nodesFlt = PSMlib.computemembernodes(
                imem + 1, nmem, nodes.shape[0], self.membersInt,
                self.membersFlt, nodes)
            nodesInt0.append(nodesInt)
            nodesFlt0.append(nodesFlt)
            quads0.append(quads)
            nnode0.append(nnode0[-1] + nodes.shape[0])

        nodesInt = numpy.array(numpy.vstack(nodesInt0), order='F')
        nodesFlt = numpy.array(numpy.vstack(nodesFlt0), order='F')
        nnode = nodesInt.shape[0]

        for comp in geometry.comps.values():
            for face in comp.faces.values():
                ni, nj = face.num_surf
                idims, jdims = self.faceDims[comp.name][face.name]
                PSMlib.computememberlocalcoords(comp.num + 1, face.num + 1, ni,
                                                nj, nnode, idims, jdims,
                                                face.surf_indices + 1,
                                                nodesInt, nodesFlt)

        linW = numpy.linspace(0, nnode - 1, nnode)
        B0 = scipy.sparse.csr_matrix((nnode, oml0.C.shape[0]))
        for src in range(4):
            W = scipy.sparse.csr_matrix((nodesFlt[:, src, 0], (linW, linW)))
            for surf in range(oml0.nsurf):
                npts = PSMlib.countmembers(surf + 1, src + 1, nnode, nodesInt)
                if npts is not 0:
                    inds, P, Q = PSMlib.computememberproj(
                        surf + 1, src + 1, nnode, npts, nodesInt, nodesFlt)
                    Ta = numpy.ones(npts)
                    Ti = inds - 1
                    Tj = numpy.linspace(0, npts - 1, npts)
                    T = scipy.sparse.csr_matrix((Ta, (Ti, Tj)),
                                                shape=(nnode, npts))

                    mu, mv = oml0.edgeProperty(surf, 1)
                    for u in range(mu):
                        for v in range(mv):
                            oml0.C[oml0.getIndex(surf, u, v, 1), :3] = [
                                u / (mu - 1), v / (mv - 1), 0
                            ]
                    oml0.computePointsC()

                    s, u, v = oml0.evaluateProjection(P, [surf], Q)
                    B = oml0.evaluateBases(s, u, v)
                    B0 = B0 + W.dot(T.dot(B))

        self.meshM = [B0, quads0, nnode0]
예제 #7
0
    def computeMembers(self):
        nmem = self.nmem
        geometry = self.geometry
        bse = geometry._bse
        groupIntPtr = self.groupIntPtr
        groupInts = self.groupInts
        groupSplitPtr = self.groupSplitPtr
        groupSplits = self.groupSplits
        quad = self.quad
        ngroup = self.ngroupS + self.ngroupM
        nint = groupIntPtr[-1,-1]
        nsplit = groupSplitPtr[-1,-1]
        nsurf = bse._num['surf']
        ncp = bse._size['cp_str']

        nodesInt0 = []
        nodesFlt0 = []
        quads0 = []
        nnode0 = [0]
        mem0 = []
        ucoord0 = []
        vcoord0 = []
        for imem in range(nmem):
            print 'Computing internal members:', self.memberNames[imem]
            edges, edge_group = PSMlib.computememberedges(imem+1, nmem, self.mem_group)
            quad.importEdges(edges)
            verts, edges = quad.verts, quad.edges
            nvert = PSMlib.countintersectionverts(edges.shape[0], ngroup, edge_group, groupIntPtr, groupSplitPtr)
            verts = PSMlib.computeintersectionverts(verts.shape[0], edges.shape[0], ngroup, nint, nsplit, nvert + verts.shape[0], verts, edges, edge_group, groupIntPtr, groupInts, groupSplitPtr, groupSplits)
            quad.importVertsNEdges(verts, edges)
            nodes, quads = quad.mesh(self.maxL, self.memEdgeLengths[imem,:,:])
            nodesInt, nodesFlt = PSMlib.computemembernodes(imem+1, nmem, nodes.shape[0], self.membersInt, self.membersFlt, nodes)
            nodesInt0.append(nodesInt)
            nodesFlt0.append(nodesFlt)
            quads0.append(quads)
            nnode0.append(nnode0[-1] + nodes.shape[0])
            P0, Q = PSMlib.computesurfaceprojections(nodes.shape[0], nodes)
            mem0.append(imem*numpy.ones(P0.shape[0]))
            ucoord0.append(P0[:,0])
            vcoord0.append(P0[:,1])

        nodesInt = numpy.array(numpy.vstack(nodesInt0),order='F')
        nodesFlt = numpy.array(numpy.vstack(nodesFlt0),order='F')
        nnode = nodesInt.shape[0]

        for comp in geometry.comps.values():
            for face in comp.faces.values():
                ni, nj = face._num_surf['u'], face._num_surf['v']
                surf_indices = face._surf_indices
                idims, jdims = self.faceDims[comp._name][face._name]
                PSMlib.computememberlocalcoords(comp._num+1, face._num+1, ni, nj, nnode, idims, jdims, surf_indices+1, nodesInt, nodesFlt)

        linW = numpy.linspace(0,nnode-1,nnode)
        B0 = scipy.sparse.csr_matrix((nnode,ncp))
        for src in range(4):
            W = scipy.sparse.csr_matrix((nodesFlt[:,src,0],(linW,linW)))
            for surf in range(nsurf):
                npts = PSMlib.countmembers(surf+1, src+1, nnode, nodesInt)
                if npts is not 0:
                    inds, P, Q = PSMlib.computememberproj(surf+1, src+1, nnode, npts, nodesInt, nodesFlt)
                    Ta = numpy.ones(npts)
                    Ti = inds - 1
                    Tj = numpy.linspace(0,npts-1,npts)
                    T = scipy.sparse.csr_matrix((Ta,(Ti,Tj)),shape=(nnode,npts))

                    mu = bse.get_bspline_option('num_cp', surf, 'u')
                    mv = bse.get_bspline_option('num_cp', surf, 'v')
                    nu = bse.get_bspline_option('num_pt', surf, 'u')
                    nv = bse.get_bspline_option('num_pt', surf, 'v')
                    
                    for u in range(mu):
                        for v in range(mv):
                            bse.vec['cp_str'](surf)[u, v, :] = [u/(mu-1), v/(mv-1), 0]
                    for u in range(nu):
                        for v in range(nv):
                            bse.vec['pt_str'](surf)[u, v, :] = [u/(nu-1), v/(nv-1), 0]

                    bse.compute_projection('temp', P, [surf], ndim=3)
                    B = bse.jac['d(temp)/d(cp_str)']
                    B0 = B0 + W * T * B

        bse.apply_jacobian('cp_str', 'd(cp_str)/d(cp)', 'cp')

        self.meshM = [B0, quads0, nnode0, mem0, ucoord0, vcoord0]