def post_geocast(t, q, q_log): """ Compute actual utility & average travel cost in simulation """ if q is None: return [None for _ in range(6)] cells = [] no_workers = 0 workers = np.zeros(shape=(2, 0)) # worker locations for i in range(len(q)): cell = q[i] cells.append([cell, log_cell_info(cell), q_log[i]]) if cell.n_data is not None: if Params.PARTIAL_CELL_SELECTION and i == len(q) - 1: _workers = rect_query_points(cell.n_data, cell.n_box) else: _workers = cell.n_data no_workers += _workers.shape[1] workers = np.concatenate([workers, _workers], axis=1) hops_count, coverage, hops_count2 = 0, 0, 0 if workers.shape[1] > 0: hops_count, coverage, hops_count2 = hops_expansion( t, workers.transpose(), Params.NETWORK_DIAMETER) return no_workers, workers, cells, hops_count, coverage, hops_count2
def post_geocast(t, q, q_log): """ Compute actual utility & average travel cost in simulation """ if q is None: return [None for _ in range(6)] cells = [] no_workers = 0 workers = np.zeros(shape=(2, 0)) # worker locations for i in range(len(q)): cell = q[i] cells.append([cell, log_cell_info(cell), q_log[i]]) if cell.n_data is not None: if Params.PARTIAL_CELL_SELECTION and i == len(q) - 1: _workers = rect_query_points(cell.n_data, cell.n_box) else: _workers = cell.n_data no_workers += _workers.shape[1] workers = np.concatenate([workers, _workers], axis=1) hops_count, coverage, hops_count2 = 0, 0, 0 if workers.shape[1] > 0: hops_count, coverage, hops_count2 = hops_expansion(t, workers.transpose(), Params.NETWORK_DIAMETER) return no_workers, workers, cells, hops_count, coverage, hops_count2
def selection_WST(data, t, tree=None): # find all workers in MTD MTD_RECT = np.array([[ t[0] - Params.ONE_KM * Params.MTD, t[1] - Params.ONE_KM * Params.MTD ], [t[0] + Params.ONE_KM * Params.MTD, t[1] + Params.ONE_KM * Params.MTD]]) locs = rect_query_points(data, MTD_RECT).transpose() #locs = sorted(locs, key=lambda loc: distance(loc[0], loc[1], t[0], t[1])) #u = 0 workers, dists = np.zeros(shape=(2, 0)), [] # find workers who would perform the task for loc in locs: dist = distance(loc[0], loc[1], t[0], t[1]) u_c = acc_rate(Params.MTD, dist) #u = 1 - (1 - u) * (1 - u_c) if is_performed(u_c): workers = np.concatenate( [workers, np.array([[loc[0]], [loc[1]]])], axis=1) dists.append(dist) # simulation if workers.shape[1] == 0: # no workers return 0, False, None, None, None, None, None return len(locs), True, 0, random.choice(dists), 0, 0, 0
def geocast_knn(data, t): # find all workers in MTD # find all workers in the query MTD_RECT = np.array([[t[0] - Params.ONE_KM * Params.MTD, t[1] - Params.ONE_KM * Params.MTD], [t[0] + Params.ONE_KM * Params.MTD, t[1] + Params.ONE_KM * Params.MTD]]) locs = rect_query_points(data, MTD_RECT).transpose() locs = sorted(locs, key=lambda loc: distance(loc[0], loc[1], t[0], t[1])) u, dist, found = 0, 0, False workers = np.zeros(shape=(2, 0)) for loc in locs: workers = np.concatenate([workers, np.array([[loc[0]], [loc[1]]])], axis=1) _dist = distance(loc[0], loc[1], t[0], t[1]) u_c = acc_rate(Params.MTD, _dist) u = 1 - (1 - u) * (1 - u_c) if is_performed(u_c): if not found: found = True dist = _dist if u >= Params.U: break # simulation isPerformed, worker, dist_fcfs = performed_tasks(workers, Params.MTD, t, True) hops_count, coverage, hops_count2 = hops_expansion(t, workers.transpose(), Params.NETWORK_DIAMETER) if isPerformed: # the task is performed return workers.shape[1], True, dist, dist_fcfs, hops_count, coverage, hops_count2 return workers.shape[1], False, None, None, hops_count, coverage, hops_count2
def geocast_naive(tree, data, L, FCFS, U, seed): query = scaling_query(tree, L, U) # find all workers in the query locs = rect_query_points(data, query).transpose() # actual utility & average travel cost isPerformed, dist = performed_tasks_naive(locs, Params.MTD, L, FCFS, seed) if isPerformed: # the task is performed return len(locs), True, dist return len(locs), False, dist
def simulation_geocast(t, q, FCFS): dist = None for i in range(len(q)): cell = q[i] if Params.PARTIAL_CELL_SELECTION and i == len(q) - 1 and cell.n_data is not None: _workers = rect_query_points(cell.n_data, cell.n_box) else: _workers = cell.n_data performed, worker, dist = performed_tasks(_workers, Params.MTD, t, FCFS) if performed: # the task is performed return True, worker, dist return False, None, dist
def simple_post_geocast(t, q, q_log): """ Compute actual utility & average travel cost in simulation """ if q is None: return [None for _ in range(6)] no_workers = 0 workers = np.zeros(shape=(2, 0)) # worker locations for i in range(len(q)): if q[i].n_data is not None: if Params.PARTIAL_CELL_SELECTION and i == len(q) - 1: _workers = rect_query_points(q[i].n_data, q[i].n_box) else: _workers = q[i].n_data no_workers += _workers.shape[1] workers = np.concatenate([workers, _workers], axis=1) hops_count = 0 if workers.shape[1] > 0: hops_count = simple_hops_expansion(workers.transpose(), Params.NETWORK_DIAMETER) return no_workers, workers, len(q), hops_count
def selection_WST(data, t, tree=None): # find all workers in MTD MTD_RECT = np.array([[t[0] - Params.ONE_KM * Params.MTD, t[1] - Params.ONE_KM * Params.MTD], [t[0] + Params.ONE_KM * Params.MTD, t[1] + Params.ONE_KM * Params.MTD]]) locs = rect_query_points(data, MTD_RECT).transpose() #locs = sorted(locs, key=lambda loc: distance(loc[0], loc[1], t[0], t[1])) #u = 0 workers, dists = np.zeros(shape=(2, 0)), [] # find workers who would perform the task for loc in locs: dist = distance(loc[0], loc[1], t[0], t[1]) u_c = acc_rate(Params.MTD, dist) #u = 1 - (1 - u) * (1 - u_c) if is_performed(u_c): workers = np.concatenate([workers, np.array([[loc[0]], [loc[1]]])], axis=1) dists.append(dist) # simulation if workers.shape[1] == 0: # no workers return 0, False, None, None, None, None, None return len(locs), True, 0, random.choice(dists), 0, 0, 0