예제 #1
0
def createPoint(event=None):
    point = CTK.varsFromWidget(VARS[0].get(), type=1)
    if len(point) != 3:
        CTK.TXT.insert('START', 'Point coords are incorrect.\n')
        CTK.TXT.insert('START', 'Error: ', 'Error')
        return
    CTK.saveTree()
    CTK.t = C.addBase2PyTree(CTK.t, 'POINTS', 1)
    base = Internal.getNodesFromName1(CTK.t, 'POINTS')
    base = base[0]
    nob = C.getNobOfBase(base, CTK.t)
    a = D.point((point[0], point[1], point[2]))
    CTK.add(CTK.t, nob, -1, a)
    CTK.TXT.insert('START', 'Point ' + VARS[0].get() + ' created.\n')
    #C._fillMissingVariables(CTK.t)
    (CTK.Nb, CTK.Nz) = CPlot.updateCPlotNumbering(CTK.t)
    CTK.TKTREE.updateApp()
    CPlot.render()
# - gapfixer (pyTree) -
import Generator.PyTree as G
import Converter.PyTree as C
import Geom.PyTree as D
import KCore.test as test

a = D.circle((0, 0, 0), 1, N=100)
a = C.convertArray2Tetra(a)
a = G.close(a)
b = G.cart((-2., -2., 0.), (0.1, 0.1, 1.), (50, 50, 1))
a = C.initVars(a, 'F', 1.)
a = C.initVars(a, 'centers:G', 2.)
a1 = G.gapfixer(a, b)
test.testT(a1, 1)

hp = D.point((0.5, 0.5, 0.))
a2 = G.gapfixer(a, b, hp, refine=0)
test.testT(a2, 2)
예제 #3
0
# - point (pyTree) -
import Geom.PyTree as D
import Converter.PyTree as C

a = D.point((0, 0, 0))
b = D.point((1, 1, 1))
C.convertPyTree2File([a, b], "out.cgns")
예제 #4
0
def drawArc(npts):
    CTK.t = C.addBase2PyTree(CTK.t, 'CONTOURS', 1)
    nodes = Internal.getNodesFromName1(CTK.t, 'CONTOURS')
    nob = C.getNobOfBase(nodes[0], CTK.t)
    CTK.TXT.insert('START', 'Click first point...\n')
    w = WIDGETS['draw']
    prev = []; second = []
    if CTK.__BUSY__ == False:
        CTK.__BUSY__ = True
        TTK.sunkButton(w)
        CPlot.setState(cursor=1)
        while CTK.__BUSY__:
            CPlot.unselectAllZones()
            CTK.saveTree()
            surfaces = getSurfaces()
            l = []
            while (l == []):
                l = CPlot.getActivePoint()
                time.sleep(CPlot.__timeStep__)
                w.update()
                if (CTK.__BUSY__ == False): break
            if (CTK.__BUSY__ == True):
                if (prev == []):
                    prev = l
                    CTK.TXT.insert('START', 'Click second point...\n')
                elif (second == [] and prev != l):
                    second = l
                    CTK.TXT.insert('START', 'Click third point...\n')
                elif (prev != l and second != l):
                    x1 = l[0]; y1 = l[1]; z1 = l[2]
                    x2 = prev[0]; y2 = prev[1]; z2 = prev[2]
                    x3 = second[0]; y3 = second[1]; z3 = second[2]
                    xa = x2 - x1; ya = y2 - y1; za = z2 - z1
                    xb = x3 - x1; yb = y3 - y1; zb = z3 - z1
                    xc = x3 - x2; yc = y3 - y2; zc = z3 - z2
                    a2 = xa*xa + ya*ya + za*za
                    b2 = xb*xb + yb*yb + zb*zb
                    c2 = xc*xc + yc*yc + zc*zc
                    A = 2*b2*c2 + 2*c2*a2 + 2*a2*b2 - a2*a2 - b2*b2 - c2*c2
                    R = math.sqrt( a2*b2*c2 / A )
                    
                    nx = ya*zb - za*yb
                    ny = za*xb - xa*zb
                    nz = xa*yb - ya*xb
                    tx = ya*nz - za*ny
                    ty = za*nx - xa*nz
                    tz = xa*ny - ya*nx
                    norm = tx*tx + ty*ty + tz*tz
                    normi = 1./math.sqrt(norm)
                    tx = tx*normi; ty = ty*normi; tz = tz*normi;
                    alpha = R*R - (xa*xa+ya*ya+za*za)*0.25
                    alpha = math.sqrt(alpha)
                    center = [0,0,0]
                    center[0] = 0.5*(x1+x2) + alpha*tx
                    center[1] = 0.5*(y1+y2) + alpha*ty
                    center[2] = 0.5*(z1+z2) + alpha*tz
                    dx3 = center[0]-x3; dy3 = center[1]-y3; dz3 = center[2]-z3
                    l = dx3*dx3 + dy3*dy3 + dz3*dz3
                    if (abs(l - R*R) > 1.e-10):
                        center[0] = 0.5*(x1+x2) - alpha*tx
                        center[1] = 0.5*(y1+y2) - alpha*ty
                        center[2] = 0.5*(z1+z2) - alpha*tz
                        dx3 = center[0]-x3; dy3 = center[1]-y3; dz3 = center[2]-z3
                        l = dx3*dx3 + dy3*dy3 + dz3*dz3
                    
                    e1 = [x1-center[0], y1-center[1], z1-center[2]]
                    e2 = [x2-center[0], y2-center[1], z2-center[2]]
                    e3 = Vector.cross(e1, e2)
                    e4 = Vector.cross(e1, e3)

                    # Images des pts dans le plan xyz 
                    pt1 = D.point((x1,y1,z1))
                    pt2 = D.point((x2,y2,z2))
                    pt3 = D.point((x3,y3,z3))
                    pt1 = T.rotate(pt1,
                                   (center[0], center[1], center[2]),
                                   (e1, e4, e3),
                                   ((1,0,0), (0,1,0), (0,0,1)) )
                    pt2 = T.rotate(pt2,
                                   (center[0], center[1], center[2]),
                                   (e1, e4, e3),
                                   ((1,0,0), (0,1,0), (0,0,1)))
                    pt3 = T.rotate(pt3,
                                   (center[0], center[1], center[2]),
                                   (e1, e4, e3),
                                   ((1,0,0), (0,1,0), (0,0,1)))
                    xp1 = C.getValue(pt1, 'CoordinateX', 0)
                    yp1 = C.getValue(pt1, 'CoordinateY', 0)
                    zp1 = C.getValue(pt1, 'CoordinateZ', 0)
                    xp2 = C.getValue(pt2, 'CoordinateX', 0)
                    yp2 = C.getValue(pt2, 'CoordinateY', 0)
                    zp2 = C.getValue(pt2, 'CoordinateZ', 0)
                    xp3 = C.getValue(pt3, 'CoordinateX', 0)
                    yp3 = C.getValue(pt3, 'CoordinateY', 0)
                    zp3 = C.getValue(pt3, 'CoordinateZ', 0)
                    
                    dx1 = (xp1-center[0])/R; dy1 = (yp1-center[1])/R
                    if dx1 > 1.: dx1 = 1.
                    if dx1 < -1.: dx1 = -1.
                    if dy1 > 0: teta1 = math.acos(dx1)
                    else: teta1 = 2*math.pi - math.acos(dx1)
                    teta1 = teta1*180./math.pi; teta1 = 360.

                    dx2 = (xp2-center[0])/R; dy2 = (yp2-center[1])/R
                    if dx2 > 1.: dx2 = 1.
                    if dx2 < -1.: dx2 = -1.
                    if dy2 > 0: teta2 = math.acos(dx2)
                    else: teta2 = 2*math.pi - math.acos(dx2)
                    teta2 = teta2*180./math.pi

                    dx3 = (xp3-center[0])/R; dy3 = (yp3-center[1])/R
                    if dx3 > 1.: dx3 = 1.
                    if dx3 < -1.: dx3 = -1.
                    if dy3 > 0: teta3 = math.acos(dx3)
                    else: teta3 = 2*math.pi - math.acos(dx3)
                    teta3 = teta3*180./math.pi

                    if teta3 > teta2: teta1 = 360.
                    else: teta1 = 0.

                    circle = D.circle((center[0],center[1],center[2]), R, 
                                      tetas=teta2, tetae=teta1, N=npts)
                    circle = T.rotate(circle,
                                      (center[0], center[1], center[2]),
                                      ((1,0,0), (0,1,0), (0,0,1)),
                                      (e1, e4, e3))
                    if surfaces != []:
                        circle = T.projectOrthoSmooth(circle, surfaces)
                    CTK.add(CTK.t, nob, -1, circle)
                    CTK.TXT.insert('START', 'Circle created.\n')
                    CTK.__BUSY__ = False
                    TTK.raiseButton(w)
                    CPlot.setState(cursor=0)
                    #C._fillMissingVariables(CTK.t)
                    (CTK.Nb, CTK.Nz) = CPlot.updateCPlotNumbering(CTK.t)
                    CTK.TKTREE.updateApp()
                    CPlot.render()
                    CPlot.setState(cursor=0)
                    prev = []
                    return
        CTK.__BUSY__ = False
        TTK.raiseButton(w)
        CPlot.setState(cursor=0)
    else:
       CTK.__BUSY__ = False
       TTK.raiseButton(w)
       CPlot.setState(cursor=0)
예제 #5
0
# - point (pyTree) -
import Geom.PyTree as D
import Converter.PyTree as C

a = D.point((0, 0, 0))
C.convertPyTree2File(a, "out.cgns")
예제 #6
0
# - identifyNodes (pyTree) -
import Converter.PyTree as C
import Generator.PyTree as G
import Geom.PyTree as D

a = G.cart((0, 0, 0), (1, 1, 1), (10, 10, 10))
b = G.cart((12, 0, 0), (1, 1, 1), (10, 10, 10))
hook, indir = C.createGlobalHook([a, b], function='nodes', indir=1)
offset = [0, C.getNPts(a), C.getNPts(b)]

f = D.point((13, 3, 3))
nodes = C.identifyNodes(hook, f)
ind = nodes[0]
print('Le premier point de f a pour indice', ind - offset[indir[ind]],
      'sur la zone', indir[ind])
#>> Le premier point de f a pour indice 332 sur la zone 1