def __init__(self, mu, sig, w=1): Potential.__init__(self, symmetric=False) self.mu = np.array(mu) self.sig = np.matrix(sig) self.prec = self.sig.I det = np.linalg.det(self.sig) p = float(len(mu)) if det == 0: raise NameError("The covariance matrix can't be singular") self.coefficient = w / (pow(2 * pi, p * 0.5) * pow(det, 0.5))
def __init__(self, A, b, c): """ :param A: an array of shape [v1, v2, ..., v_Nd, Nc, Nc], where v1, ..., v_Nd are the number of states of the Nd discrete nodes in the scope, and Nc is the number of continuous nodes :param b: an array of shape [v1, v2, ..., v_Nd, Nc] :param c: an array of shape [v1, v2, ..., v_Nd] :return: """ Potential.__init__(self, symmetric=False) self.A = A self.b = b self.c = c self.Nd = len(c.shape) # num disc nodes self.Nc = int(b.shape[-1]) # num cont nodes self.log_potential = LogHybridQuadratic(A, b, c)
def __init__(self, A, b, c): Potential.__init__(self, symmetric=False) self.A = np.array(A) self.b = np.array(b) self.c = c self.log_potential = LogQuadratic(A, b, c)
def __init__(self, distant_cof, scaling_cof, max_threshold): Potential.__init__(self, symmetric=True) self.distant_cof = distant_cof self.scaling_cof = scaling_cof self.max_threshold = max_threshold self.v = pow(e, -self.max_threshold / self.scaling_cof)
def __init__(self, mu, sig): Potential.__init__(self, symmetric=True) self.mu = mu self.sig = sig
def __init__(self, coeff, sig): Potential.__init__(self, symmetric=True) self.coeff = coeff self.sig = sig
def __init__(self, table, symmetric=False): Potential.__init__(self, symmetric=symmetric) self.table = table