def run_multi_thread(self): """ Run the monte carlo simulation @return: """ # print('LHS run') self.__cancel__ = False # initialize vars batch_size = self.sampling_points n = len(self.circuit.buses) m = len(self.circuit.branches) n_cores = multiprocessing.cpu_count() self.progress_signal.emit(0.0) self.progress_text.emit( 'Running Latin Hypercube Sampling in parallel using ' + str(n_cores) + ' cores ...') lhs_results = MonteCarloResults(n, m, batch_size) avg_res = PowerFlowResults() avg_res.initialize(n, m) # compile # print('Compiling...', end='') numerical_circuit = self.circuit.compile() numerical_islands = numerical_circuit.compute( branch_tolerance_mode=self.options.branch_impedance_tolerance_mode) lhs_results.bus_types = numerical_circuit.bus_types max_iter = batch_size * len(numerical_islands) Sbase = self.circuit.Sbase it = 0 # For every circuit, run the time series for numerical_island in numerical_islands: # try: # set the time series as sampled in the circuit monte_carlo_input = make_monte_carlo_input(numerical_island) mc_time_series = monte_carlo_input(batch_size, use_latin_hypercube=True) Vbus = numerical_island.Vbus # short cut the indices b_idx = numerical_island.original_bus_idx br_idx = numerical_island.original_branch_idx manager = multiprocessing.Manager() return_dict = manager.dict() t = 0 while t < batch_size and not self.__cancel__: k = 0 jobs = list() # launch only n_cores jobs at the time while k < n_cores + 2 and (t + k) < batch_size: # set the power values Y, I, S = mc_time_series.get_at(t) # run power flow at the circuit p = multiprocessing.Process( target=power_flow_worker, args=(t, self.options, numerical_island, Vbus, S / Sbase, I / Sbase, return_dict)) jobs.append(p) p.start() k += 1 t += 1 # wait for all jobs to complete for proc in jobs: proc.join() progress = ((t + 1) / batch_size) * 100 self.progress_signal.emit(progress) # collect results self.progress_text.emit('Collecting results...') for t in return_dict.keys(): # store circuit results at the time index 't' res = return_dict[t] lhs_results.S_points[ t, numerical_island.original_bus_idx] = res.Sbus lhs_results.V_points[ t, numerical_island.original_bus_idx] = res.voltage lhs_results.I_points[ t, numerical_island.original_branch_idx] = res.Ibranch lhs_results.loading_points[ t, numerical_island.original_branch_idx] = res.loading lhs_results.losses_points[ t, numerical_island.original_branch_idx] = res.losses # except Exception as ex: # print(c.name, ex) if self.__cancel__: break # compile MC results self.progress_text.emit('Compiling results...') lhs_results.compile() # compute the island branch results island_avg_res = numerical_island.compute_branch_results( lhs_results.voltage[b_idx]) # apply the island averaged results avg_res.apply_from_island(island_avg_res, b_idx=b_idx, br_idx=br_idx) # lhs_results the averaged branch magnitudes lhs_results.sbranch = avg_res.Sbranch lhs_results.losses = avg_res.losses self.results = lhs_results # send the finnish signal self.progress_signal.emit(0.0) self.progress_text.emit('Done!') self.done_signal.emit() return lhs_results
def run_single_thread(self): """ Run the monte carlo simulation @return: """ self.__cancel__ = False # initialize the grid time series results # we will append the island results with another function self.circuit.time_series_results = TimeSeriesResults(0, 0, 0, 0, 0) Sbase = self.circuit.Sbase it = 0 variance_sum = 0.0 std_dev_progress = 0 v_variance = 0 n = len(self.circuit.buses) m = len(self.circuit.branches) # compile circuits numerical_circuit = self.circuit.compile() # perform the topological computation calc_inputs_dict = numerical_circuit.compute_ts( branch_tolerance_mode=self.options.branch_impedance_tolerance_mode, ignore_single_node_islands=self.options.ignore_single_node_islands) mc_results = MonteCarloResults(n, m) avg_res = PowerFlowResults() avg_res.initialize(n, m) v_sum = zeros(n, dtype=complex) self.progress_signal.emit(0.0) while (std_dev_progress < 100.0) and (it < self.max_mc_iter) and not self.__cancel__: self.progress_text.emit('Running Monte Carlo: Variance: ' + str(v_variance)) mc_results = MonteCarloResults(n, m, self.batch_size) # for each partition of the profiles... for t_key, calc_inputs in calc_inputs_dict.items(): # For every island, run the time series for island_index, numerical_island in enumerate(calc_inputs): # set the time series as sampled monte_carlo_input = make_monte_carlo_input( numerical_island) mc_time_series = monte_carlo_input( self.batch_size, use_latin_hypercube=False) Vbus = numerical_island.Vbus # run the time series for t in range(self.batch_size): # set the power values Y, I, S = mc_time_series.get_at(t) res = single_island_pf( circuit=numerical_island, Vbus=Vbus, Sbus=S / Sbase, Ibus=I / Sbase, branch_rates=numerical_island.branch_rates, options=self.options, logger=self.logger) mc_results.S_points[ t, numerical_island.original_bus_idx] = res.Sbus mc_results.V_points[ t, numerical_island.original_bus_idx] = res.voltage mc_results.I_points[ t, numerical_island.original_branch_idx] = res.Ibranch mc_results.loading_points[ t, numerical_island.original_branch_idx] = res.loading mc_results.losses_points[ t, numerical_island.original_branch_idx] = res.losses # short cut the indices b_idx = numerical_island.original_bus_idx br_idx = numerical_island.original_branch_idx self.progress_text.emit('Compiling results...') mc_results.compile() # compute the island branch results island_avg_res = numerical_island.compute_branch_results( mc_results.voltage[b_idx]) # apply the island averaged results avg_res.apply_from_island(island_avg_res, b_idx=b_idx, br_idx=br_idx) # Compute the Monte Carlo values it += self.batch_size mc_results.append_batch(mc_results) v_sum += mc_results.get_voltage_sum() v_avg = v_sum / it v_variance = abs( (power(mc_results.V_points - v_avg, 2.0) / (it - 1)).min()) # progress variance_sum += v_variance err = variance_sum / it if err == 0: err = 1e-200 # to avoid division by zeros mc_results.error_series.append(err) # emmit the progress signal std_dev_progress = 100 * self.mc_tol / err if std_dev_progress > 100: std_dev_progress = 100 self.progress_signal.emit( max((std_dev_progress, it / self.max_mc_iter * 100))) # print(iter, '/', max_mc_iter) # print('Vmc:', Vavg) # print('Vstd:', Vvariance, ' -> ', std_dev_progress, ' %') # compile results mc_results.sbranch = avg_res.Sbranch # mc_results.losses = avg_res.losses mc_results.bus_types = numerical_circuit.bus_types # send the finnish signal self.progress_signal.emit(0.0) self.progress_text.emit('Done!') self.done_signal.emit() return mc_results
def run_single_thread(self): """ Run the monte carlo simulation @return: """ # print('LHS run') self.__cancel__ = False # initialize the power flow power_flow = PowerFlowMP(self.circuit, self.options) # initialize the grid time series results # we will append the island results with another function self.circuit.time_series_results = TimeSeriesResults(0, 0, 0, 0, 0) batch_size = self.sampling_points n = len(self.circuit.buses) m = len(self.circuit.branches) self.progress_signal.emit(0.0) self.progress_text.emit('Running Latin Hypercube Sampling...') lhs_results = MonteCarloResults(n, m, batch_size) avg_res = PowerFlowResults() avg_res.initialize(n, m) # compile the numerical circuit numerical_circuit = self.circuit.compile() numerical_input_islands = numerical_circuit.compute( branch_tolerance_mode=self.options.branch_impedance_tolerance_mode) max_iter = batch_size * len(numerical_input_islands) Sbase = numerical_circuit.Sbase it = 0 # For every circuit, run the time series for numerical_island in numerical_input_islands: # try: # set the time series as sampled in the circuit # build the inputs monte_carlo_input = make_monte_carlo_input(numerical_island) mc_time_series = monte_carlo_input(batch_size, use_latin_hypercube=True) Vbus = numerical_island.Vbus # short cut the indices b_idx = numerical_island.original_bus_idx br_idx = numerical_island.original_branch_idx # run the time series for t in range(batch_size): # set the power values from a Monte carlo point at 't' Y, I, S = mc_time_series.get_at(t) # Run the set monte carlo point at 't' res = power_flow.run_pf(circuit=numerical_island, Vbus=Vbus, Sbus=S / Sbase, Ibus=I / Sbase) # Gather the results lhs_results.S_points[ t, numerical_island.original_bus_idx] = res.Sbus lhs_results.V_points[ t, numerical_island.original_bus_idx] = res.voltage lhs_results.I_points[ t, numerical_island.original_branch_idx] = res.Ibranch lhs_results.loading_points[ t, numerical_island.original_branch_idx] = res.loading lhs_results.losses_points[ t, numerical_island.original_branch_idx] = res.losses it += 1 self.progress_signal.emit(it / max_iter * 100) if self.__cancel__: break if self.__cancel__: break # compile MC results self.progress_text.emit('Compiling results...') lhs_results.compile() # compute the island branch results island_avg_res = numerical_island.compute_branch_results( lhs_results.voltage[b_idx]) # apply the island averaged results avg_res.apply_from_island(island_avg_res, b_idx=b_idx, br_idx=br_idx) # lhs_results the averaged branch magnitudes lhs_results.sbranch = avg_res.Sbranch lhs_results.bus_types = numerical_circuit.bus_types # Ibranch = avg_res.Ibranch # loading = avg_res.loading # lhs_results.losses = avg_res.losses # flow_direction = avg_res.flow_direction # Sbus = avg_res.Sbus self.results = lhs_results # send the finnish signal self.progress_signal.emit(0.0) self.progress_text.emit('Done!') self.done_signal.emit() return lhs_results
def run_multi_thread(self): """ Run the monte carlo simulation @return: """ # print('LHS run') self.__cancel__ = False # initialize vars batch_size = self.sampling_points n = len(self.circuit.buses) m = self.circuit.get_branch_number() n_cores = multiprocessing.cpu_count() self.pool = multiprocessing.Pool() self.progress_signal.emit(0.0) self.progress_text.emit( 'Running Latin Hypercube Sampling in parallel using ' + str(n_cores) + ' cores ...') lhs_results = MonteCarloResults(n, m, batch_size, name='Latin Hypercube') avg_res = PowerFlowResults() avg_res.initialize(n, m) # compile the multi-circuit numerical_circuit = self.circuit.compile_time_series() # perform the topological computation calc_inputs_dict = numerical_circuit.compute( branch_tolerance_mode=self.options.branch_impedance_tolerance_mode, ignore_single_node_islands=self.options.ignore_single_node_islands) # for each partition of the profiles... for t_key, calc_inputs in calc_inputs_dict.items(): # For every island, run the time series for island_index, numerical_island in enumerate(calc_inputs): lhs_results.bus_types = numerical_circuit.bus_types monte_carlo_input = make_monte_carlo_input(numerical_island) mc_time_series = monte_carlo_input(batch_size, use_latin_hypercube=True) Vbus = numerical_island.Vbus branch_rates = numerical_island.branch_rates # short cut the indices b_idx = numerical_island.original_bus_idx br_idx = numerical_island.original_branch_idx # Start jobs self.returned_results = list() t = 0 while t < batch_size and not self.__cancel__: Ysh, Ibus, Sbus = mc_time_series.get_at(t) args = (t, self.options, numerical_island, Vbus, Sbus, Ibus, branch_rates) self.pool.apply_async(power_flow_worker_args, (args, ), callback=self.update_progress_mt) # wait for all jobs to complete self.pool.close() self.pool.join() # collect results self.progress_text.emit('Collecting results...') for t, res in self.returned_results: # store circuit results at the time index 't' lhs_results.S_points[ t, numerical_island.original_bus_idx] = res.Sbus lhs_results.V_points[ t, numerical_island.original_bus_idx] = res.voltage lhs_results.Sbr_points[ t, numerical_island.original_branch_idx] = res.Sf lhs_results.loading_points[ t, numerical_island.original_branch_idx] = res.loading lhs_results.losses_points[ t, numerical_island.original_branch_idx] = res.losses # compile MC results self.progress_text.emit('Compiling results...') lhs_results.compile() # compute the island branch results island_avg_res = numerical_island.compute_branch_results( lhs_results.voltage[b_idx]) # apply the island averaged results avg_res.apply_from_island(island_avg_res, b_idx=b_idx, br_idx=br_idx) # lhs_results the averaged branch magnitudes lhs_results.sbranch = avg_res.Sf lhs_results.losses = avg_res.losses self.results = lhs_results # send the finnish signal self.progress_signal.emit(0.0) self.progress_text.emit('Done!') self.done_signal.emit() return lhs_results
def run_single_thread(self): """ Run the monte carlo simulation @return: """ # print('LHS run') self.__cancel__ = False # initialize the grid time series results # we will append the island results with another function batch_size = self.sampling_points n = len(self.circuit.buses) m = len(self.circuit.branches) self.progress_signal.emit(0.0) self.progress_text.emit('Running Latin Hypercube Sampling...') lhs_results = MonteCarloResults(n, m, batch_size, name='Latin Hypercube') avg_res = PowerFlowResults() avg_res.initialize(n, m) # compile the multi-circuit numerical_circuit = self.circuit.compile() # perform the topological computation calc_inputs_dict = numerical_circuit.compute_ts( branch_tolerance_mode=self.options.branch_impedance_tolerance_mode, ignore_single_node_islands=self.options.ignore_single_node_islands) it = 0 # for each partition of the profiles... for t_key, calc_inputs in calc_inputs_dict.items(): # For every island, run the time series for island_index, numerical_island in enumerate(calc_inputs): # try: # set the time series as sampled in the circuit # build the inputs monte_carlo_input = make_monte_carlo_input(numerical_island) mc_time_series = monte_carlo_input(batch_size, use_latin_hypercube=True) Vbus = numerical_island.Vbus # short cut the indices b_idx = numerical_island.original_bus_idx br_idx = numerical_island.original_branch_idx # run the time series for t in range(batch_size): # set the power values from a Monte carlo point at 't' Y, I, S = mc_time_series.get_at(t) # Run the set monte carlo point at 't' res = single_island_pf( circuit=numerical_island, Vbus=Vbus, Sbus=S, Ibus=I, branch_rates=numerical_island.branch_rates, options=self.options, logger=self.logger) # Gather the results lhs_results.S_points[ t, numerical_island.original_bus_idx] = res.Sbus lhs_results.V_points[ t, numerical_island.original_bus_idx] = res.voltage lhs_results.I_points[ t, numerical_island.original_branch_idx] = res.Ibranch lhs_results.loading_points[ t, numerical_island.original_branch_idx] = res.loading lhs_results.losses_points[ t, numerical_island.original_branch_idx] = res.losses it += 1 self.progress_signal.emit(it / batch_size * 100) if self.__cancel__: break if self.__cancel__: break # compile MC results self.progress_text.emit('Compiling results...') lhs_results.compile() # compute the island branch results island_avg_res = numerical_island.compute_branch_results( lhs_results.voltage[b_idx]) # apply the island averaged results avg_res.apply_from_island(island_avg_res, b_idx=b_idx, br_idx=br_idx) # lhs_results the averaged branch magnitudes lhs_results.sbranch = avg_res.Sbranch lhs_results.bus_types = numerical_circuit.bus_types self.results = lhs_results # send the finnish signal self.progress_signal.emit(0.0) self.progress_text.emit('Done!') self.done_signal.emit() return lhs_results
def run_multi_thread(self): """ Run the monte carlo simulation @return: StochasticPowerFlowResults instance """ self.__cancel__ = False # initialize the grid time series results # we will append the island results with another function # self.circuit.time_series_results = TimeSeriesResults(0, 0, []) self.pool = multiprocessing.Pool() it = 0 variance_sum = 0.0 std_dev_progress = 0 v_variance = 0 n = len(self.circuit.buses) m = self.circuit.get_branch_number() mc_results = StochasticPowerFlowResults(n, m, name='Monte Carlo') avg_res = PowerFlowResults() avg_res.initialize(n, m) # compile circuits numerical_circuit = self.circuit.compile_time_series() # perform the topological computation calc_inputs_dict = numerical_circuit.compute( branch_tolerance_mode=self.options.branch_impedance_tolerance_mode, ignore_single_node_islands=self.options.ignore_single_node_islands) mc_results.bus_types = numerical_circuit.bus_types v_sum = np.zeros(n, dtype=complex) self.progress_signal.emit(0.0) while (std_dev_progress < 100.0) and (it < self.sampling_points) and not self.__cancel__: self.progress_text.emit('Running Monte Carlo: Variance: ' + str(v_variance)) mc_results = StochasticPowerFlowResults(n, m, self.batch_size, name='Monte Carlo') # for each partition of the profiles... for t_key, calc_inputs in calc_inputs_dict.items(): # For every island, run the time series for island_index, numerical_island in enumerate(calc_inputs): # set the time series as sampled monte_carlo_input = make_monte_carlo_input( numerical_island) mc_time_series = monte_carlo_input( self.batch_size, use_latin_hypercube=False) Vbus = numerical_island.Vbus branch_rates = numerical_island.branch_rates # short cut the indices b_idx = numerical_island.original_bus_idx br_idx = numerical_island.original_branch_idx self.returned_results = list() t = 0 while t < self.batch_size and not self.__cancel__: Ysh, Ibus, Sbus = mc_time_series.get_at(t) args = (t, self.options, numerical_island, Vbus, Sbus, Ibus, branch_rates) self.pool.apply_async(power_flow_worker_args, (args, ), callback=self.update_progress_mt) # wait for all jobs to complete self.pool.close() self.pool.join() # collect results self.progress_text.emit('Collecting batch results...') for t, res in self.returned_results: # store circuit results at the time index 't' mc_results.S_points[ t, numerical_island.original_bus_idx] = res.Sbus mc_results.V_points[ t, numerical_island.original_bus_idx] = res.voltage mc_results.Sbr_points[ t, numerical_island.original_branch_idx] = res.Sf mc_results.loading_points[ t, numerical_island.original_branch_idx] = res.loading mc_results.losses_points[ t, numerical_island.original_branch_idx] = res.losses # compile MC results self.progress_text.emit('Compiling results...') mc_results.compile() # compute the island branch results island_avg_res = numerical_island.compute_branch_results( mc_results.voltage[b_idx]) # apply the island averaged results avg_res.apply_from_island(island_avg_res, b_idx=b_idx, br_idx=br_idx) # Compute the Monte Carlo values it += self.batch_size mc_results.append_batch(mc_results) v_sum += mc_results.get_voltage_sum() v_avg = v_sum / it v_variance = np.abs( (np.power(mc_results.V_points - v_avg, 2.0) / (it - 1)).min()) # progress variance_sum += v_variance err = variance_sum / it if err == 0: err = 1e-200 # to avoid division by zeros mc_results.error_series.append(err) # emmit the progress signal std_dev_progress = 100 * self.mc_tol / err if std_dev_progress > 100: std_dev_progress = 100 self.progress_signal.emit( max((std_dev_progress, it / self.sampling_points * 100))) # compute the averaged branch magnitudes mc_results.sbranch = avg_res.Sf mc_results.losses = avg_res.losses # print('V mc: ', mc_results.voltage) # send the finnish signal self.progress_signal.emit(0.0) self.progress_text.emit('Done!') self.done_signal.emit() return mc_results
def run_multi_thread(self): """ Run the monte carlo simulation @return: """ self.__cancel__ = False # initialize the grid time series results # we will append the island results with another function self.circuit.time_series_results = TimeSeriesResults(0, 0, 0, 0, 0) Sbase = self.circuit.Sbase n_cores = multiprocessing.cpu_count() it = 0 variance_sum = 0.0 std_dev_progress = 0 v_variance = 0 n = len(self.circuit.buses) m = len(self.circuit.branches) mc_results = MonteCarloResults(n, m) avg_res = PowerFlowResults() avg_res.initialize(n, m) # compile circuits numerical_circuit = self.circuit.compile() numerical_input_islands = numerical_circuit.compute(branch_tolerance_mode=self.options.branch_impedance_tolerance_mode) mc_results.bus_types = numerical_circuit.bus_types v_sum = zeros(n, dtype=complex) self.progress_signal.emit(0.0) while (std_dev_progress < 100.0) and (it < self.max_mc_iter) and not self.__cancel__: self.progress_text.emit('Running Monte Carlo: Variance: ' + str(v_variance)) mc_results = MonteCarloResults(n, m, self.batch_size) # For every circuit, run the time series for numerical_island in numerical_input_islands: # set the time series as sampled monte_carlo_input = make_monte_carlo_input(numerical_island) mc_time_series = monte_carlo_input(self.batch_size, use_latin_hypercube=False) Vbus = numerical_island.Vbus manager = multiprocessing.Manager() return_dict = manager.dict() # short cut the indices b_idx = numerical_island.original_bus_idx br_idx = numerical_island.original_branch_idx t = 0 while t < self.batch_size and not self.__cancel__: k = 0 jobs = list() # launch only n_cores jobs at the time while k < n_cores + 2 and (t + k) < self.batch_size: # set the power values Y, I, S = mc_time_series.get_at(t) # run power flow at the circuit p = multiprocessing.Process(target=power_flow_worker, args=(t, self.options, numerical_island, Vbus, S / Sbase, I / Sbase, return_dict)) jobs.append(p) p.start() k += 1 t += 1 # wait for all jobs to complete for proc in jobs: proc.join() # progress = ((t + 1) / self.batch_size) * 100 # self.progress_signal.emit(progress) # collect results self.progress_text.emit('Collecting batch results...') for t in return_dict.keys(): # store circuit results at the time index 't' res = return_dict[t] mc_results.S_points[t, numerical_island.original_bus_idx] = res.Sbus mc_results.V_points[t, numerical_island.original_bus_idx] = res.voltage mc_results.I_points[t, numerical_island.original_branch_idx] = res.Ibranch mc_results.loading_points[t, numerical_island.original_branch_idx] = res.loading mc_results.losses_points[t, numerical_island.original_branch_idx] = res.losses # compile MC results self.progress_text.emit('Compiling results...') mc_results.compile() # compute the island branch results island_avg_res = numerical_island.compute_branch_results(mc_results.voltage[b_idx]) # apply the island averaged results avg_res.apply_from_island(island_avg_res, b_idx=b_idx, br_idx=br_idx) # Compute the Monte Carlo values it += self.batch_size mc_results.append_batch(mc_results) v_sum += mc_results.get_voltage_sum() v_avg = v_sum / it v_variance = abs((power(mc_results.V_points - v_avg, 2.0) / (it - 1)).min()) # progress variance_sum += v_variance err = variance_sum / it if err == 0: err = 1e-200 # to avoid division by zeros mc_results.error_series.append(err) # emmit the progress signal std_dev_progress = 100 * self.mc_tol / err if std_dev_progress > 100: std_dev_progress = 100 self.progress_signal.emit(max((std_dev_progress, it / self.max_mc_iter * 100))) # print(iter, '/', max_mc_iter) # print('Vmc:', Vavg) # print('Vstd:', Vvariance, ' -> ', std_dev_progress, ' %') # compute the averaged branch magnitudes mc_results.sbranch = avg_res.Sbranch mc_results.losses = avg_res.losses # print('V mc: ', mc_results.voltage) # send the finnish signal self.progress_signal.emit(0.0) self.progress_text.emit('Done!') self.done_signal.emit() return mc_results