def testMutate0(): lib = mkDefaultLib() # region #+ Add recogFive to library inType = mkRealTensorSort([1, 1, 28, 28]) outType = mkBoolTensorSort([1, 1]) recogDigitType = mkFuncSort(inType, outType) lib.addItem(PPLibItem('recogFive', recogDigitType, None)) # endregion inType = mkListSort(mkRealTensorSort([1, 1, 28, 28])) outType = mkListSort(mkBoolTensorSort([1, 1])) sort = mkFuncSort(inType, outType) prog = PPFuncApp(fn=PPVar(name='lib.map_l'), args=[PPVar(name='lib.recogFive')]) for i in range(100): newProg = mutate(prog, lib) if newProg is None: continue print(repr_py(newProg)) isort = inferType(newProg, lib) assert isort is not None assert sort == isort
def __init__(self, settings, toy_class, seq, dbg_learn_parameters): input_type = mkListSort(mkRealTensorSort([1, 1, 28, 28])) output_type = mkRealTensorSort([1, 1]) fn_sort = mkFuncSort(input_type, output_type) super(CountToysTask, self).__init__(fn_sort, settings, seq, dbg_learn_parameters) self.toy_class = toy_class
def testMutate2(): """ Unkprog """ lib = mkDefaultLib() addRecogFive(lib) inType = mkListSort(mkRealTensorSort([1, 1, 28, 28])) outType = mkRealTensorSort([1, 1]) sort = mkFuncSort(inType, outType) prog = \ PPTermUnk(name='nn_fun_x_906', sort=sort) for i in range(100): newProg = mutate(prog, lib) if newProg is None: continue # print(repr_py(newProg)) # print('newProg: ', newProg) # print('newProgReprPy: ', repr_py(newProg)) isort = inferType(newProg, lib) if isort is None: print(repr_py(newProg)) print('newProg: ', newProg) continue assert sort == isort
def test5(): def mk_recognise_5s(): res = NetCNN("recognise_5s", input_ch=1, output_dim=1, output_activation=F.sigmoid) res.load('../Interpreter/Models/is5_classifier.pth.tar') return res libSynth = FnLibrary() t = PPSortVar('T') t1 = PPSortVar('T1') t2 = PPSortVar('T2') libSynth.addItems([ PPLibItem( 'recognise_5s', mkFuncSort(mkTensorSort(PPReal(), ['a', 1, 28, 28]), mkTensorSort(PPReal(), ['a', 1])), mk_recognise_5s()), PPLibItem( 'map', mkFuncSort(mkFuncSort(t1, t2), mkListSort(t1), mkListSort(t2)), pp_map), ]) ioExamples = None img = mkRealTensorSort([1, 1, 28, 28]) imgList = mkListSort(img) isFive = mkRealTensorSort([1, 1]) imgToIsFive = mkFuncSort(img, isFive) isFiveList = mkListSort(isFive) fnSort = mkFuncSort(imgList, isFiveList) interpreter = None """targetProg = lambda inputs: map(lib.recognise_5s, inputs)""" solver = SymbolicSynthesizer(interpreter, libSynth, fnSort, ioExamples, ioExamples) solver.setEvaluate(False) # TODO: use "search" instead of "solve" solution, score = solver.solve() print(solution) print(score)
def __init__(self, settings, digit, seq, dbg_learn_parameters): input_type = mkListSort(mkRealTensorSort([1, 1, 28, 28])) # input_type = mkListSort(mkBoolTensorSort([1, 1])) # input_type = mkBoolTensorSort([1, 1]) output_type = mkRealTensorSort([1, 1]) fn_sort = mkFuncSort(input_type, output_type) super(CountDigitOccTask, self).__init__(fn_sort, settings, seq, dbg_learn_parameters) self.digit = digit
def main(): try: # s1 = mkIntTensorSort(['A', 3]) # print(ntstr(s1)) # # t1 = mkIntTensorSort([2, 'B']) # print(ntstr(t1)) # # subst = unifyLists([s1], [t1]) # for x, y in subst: # print("%s ---> %s" % (ntstr(x), ntstr(y))) t1 = PPSortVar('T1') t2 = PPSortVar('T2') s = PPSortVar('S') x = mkFuncSort(mkFuncSort(t1, t2), mkListSort(t1), mkListSort(t2)) y = mkFuncSort(mkFuncSort(s, s), mkListSort(s), mkListSort(s)) displayUnifyListH([x], [y]) except: print("exception") raise
def testMutate1(): lib = mkDefaultLib() addRecogFive(lib) inType = mkListSort(mkRealTensorSort([1, 1, 28, 28])) outType = mkRealTensorSort([1, 1]) sort = mkFuncSort(inType, outType) prog = \ PPFuncApp(fn=PPVar(name='lib.compose'), args=[PPFuncApp(fn=PPVar(name='lib.fold_l'), args=[PPTermUnk(name='nn_fun_x_906', sort=PPFuncSort( args=[PPTensorSort(param_sort=PPReal(), shape=[PPDimConst(value=1), PPDimConst(value=1)]), PPTensorSort(param_sort=PPBool(), shape=[PPDimConst(value=1), PPDimConst(value=1)])], rtpe=PPTensorSort(param_sort=PPReal(), shape=[PPDimConst(value=1), PPDimConst(value=1)]))), PPFuncApp(fn=PPVar(name='lib.zeros'), args=[PPIntConst(value=1)])]), PPFuncApp(fn=PPVar(name='lib.map_l'), args=[PPVar(name='lib.recogFive')])]) for i in range(100): newProg = mutate(prog, lib) if newProg is None: continue # print(repr_py(newProg)) # print('newProg: ', newProg) # print('newProgReprPy: ', repr_py(newProg)) isort = inferType(newProg, lib) if isort is None: print(repr_py(newProg)) print('newProg: ', newProg) continue assert sort == isort
def test_synthesizer_sum_digits(): libSynth = getLib() input_type = mkListSort(mkRealTensorSort([1, 1, 28, 28])) output_type = mkRealTensorSort([1, 1]) fn_sort = mkFuncSort(input_type, output_type) tr1_1_28_28 = mkRealTensorSort([1, 1, 28, 28]) tb_1_10 = mkBoolTensorSort([1, 10]) classify_digit = mkFuncSort(tr1_1_28_28, tb_1_10) libSynth.addItems([ PPLibItem('classify_digit', classify_digit, None), ]) synth = SymbolicSynthesizer(libSynth, fn_sort) I = 10000 i = 0 for prog, unkMap in synth.genProgs(): i = i + 1 if i > I: break if i % 100 == 0: print(i) unks = ASTUtils.getUnks(prog) if len(unks) > 1: continue for unk in unks: if ASTUtils.isAbstract(unk.sort): continue print(repr_py_ann(prog))
def lst(t): return mkListSort(t)
def addImageFunctionsToLibrary(libSynth: FnLibrary, load_recognise_5s=True): real_tensor_2d = mkTensorSort(PPReal(), ['a', 'b']) bool_tensor_2d = mkTensorSort(PPBool(), ['a', 'b']) libSynth.addItems([ PPLibItem('add', mkFuncSort(real_tensor_2d, real_tensor_2d, real_tensor_2d), pp_add), PPLibItem('add1', mkFuncSort(real_tensor_2d, bool_tensor_2d, real_tensor_2d), pp_add), PPLibItem( 'map', mkFuncSort(mkFuncSort(t1, t2), mkListSort(t1), mkListSort(t2)), pp_map), PPLibItem( 'map2d', mkFuncSort(mkFuncSort(t1, t2), mkListSort(mkListSort(t1)), mkListSort(mkListSort(t2))), pp_map2d), # question ^ should we transform map's definition into using vectors? is this not enough? # we don't know the type of the tensor output, w/o knowing the function. # PPLibItem('cat', mkFuncSort(mkTensorSort(PPReal(), ['a', 'b']), mkTensorSort(PPReal(), ['a', 'c']), # mkTensorSort(PPReal(), ['a', 'd'])), pp_cat), # TODO: d = b + c # Question: can we write 'b+c'? I'm not sure if it's useful # Also, the input types don't have to be PPReal, but for not it should suffice to just leave it like this? # ^ It can accept a tuple of tensors of different shapes, but maybe we can restrict it to tuple of 2 for now. # PPLibItem('zeros', mkFuncSort(PPInt(), mkTensorSort(PPReal(), ['a', 'b']), mkTensorSort(PPReal(), ['a', 'c'])), pp_get_zeros), # PPLibItem('zeros', mkFuncSort(PPInt(), PPInt(), mkTensorSort(PPReal(), ['a', 'c'])), pp_get_zeros), # 4, [2, 5] -> [2, 4] # 7, [2, 5] -> [2, 7] # Question: How do we say that the ints are the same number, PPInt() == 'c' # Also, The input tensor type doesn't have to be PPReal, can be int or bool as well # Also, the input tensor can be of any type, doesn't need to be float PPLibItem('zeros', mkFuncSort(PPDimVar('a'), mkRealTensorSort([1, 'a'])), pp_get_zeros), PPLibItem('reduce_general', mkFuncSort(mkFuncSort(t, t1, t), mkListSort(t1), t, t), pp_reduce), PPLibItem('reduce', mkFuncSort(mkFuncSort(t, t, t), mkListSort(t), t), pp_reduce), # pp_get_zeros # PPLibItem('reduce_with_init_zeros', mkFuncSort(mkFuncSort(t, t1, t), mkListSort(t1), t), pp_reduce_w_zeros_init), # Question : the initializer is only optional. How do we encode this information? # The following are just test functions for evaluation, not properly typed. # ,PPLibItem('mult_range09', mkFuncSort(mkFuncSort(t, t1, t), mkListSort(t1), t, t), get_multiply_by_range09()) # ,PPLibItem('argmax', mkFuncSort(mkFuncSort(t, t1, t), mkListSort(t1), t, t), argmax) # PPLibItem('split', mkFuncSort(PPImageSort(), mkListSort(PPImageSort())), split), # PPLibItem('join', mkFuncSort(mkListSort(PPImageSort()), PPImageSort()), None), ]) if load_recognise_5s: libSynth.addItems([ PPLibItem( 'recognise_5s', mkFuncSort(mkTensorSort(PPReal(), ['a', 1, 28, 28]), mkTensorSort(PPBool(), ['a', 1])), mk_recognise_5s()) ]) # set the neural libraries to evaluation mode # TODO: need to make sure we're properly switching between eval and train everywhere libSynth.recognise_5s.eval()
def test_sum_digits(): libSynth = getLib() input_type = mkListSort(mkRealTensorSort([1, 1, 28, 28])) output_type = mkRealTensorSort([1, 1]) fn_sort = mkFuncSort(input_type, output_type) tr1_1_28_28 = mkRealTensorSort([1, 1, 28, 28]) tb_1_10 = mkBoolTensorSort([1, 10]) classify_digit = mkFuncSort(tr1_1_28_28, tb_1_10) libSynth.addItems([ PPLibItem('classify_digit', classify_digit, None), ]) t = PPTermNT("Z", fn_sort) assert (t == PPTermNT( name='Z', sort=PPFuncSort(args=[ PPListSort(param_sort=PPTensorSort(param_sort=PPReal(), shape=[ PPDimConst(value=1), PPDimConst(value=1), PPDimConst(value=28), PPDimConst(value=28) ])) ], rtpe=PPTensorSort( param_sort=PPReal(), shape=[PPDimConst(value=1), PPDimConst(value=1)])))) printTerm(t) # (Z: (List[Tensor[real][1,1,28,28]] --> Tensor[real][1,1])) t = Rules.expandToFuncApp(libSynth, t, 1, 'compose') assert (t == PPFuncApp( fn=PPVar(name='lib.compose'), args=[ PPTermNT(name='Z', sort=PPFuncSort(args=[PPSortVar(name='B')], rtpe=PPTensorSort(param_sort=PPReal(), shape=[ PPDimConst(value=1), PPDimConst(value=1) ]))), PPTermNT(name='Z', sort=PPFuncSort(args=[ PPListSort( param_sort=PPTensorSort(param_sort=PPReal(), shape=[ PPDimConst(value=1), PPDimConst(value=1), PPDimConst(value=28), PPDimConst(value=28) ])) ], rtpe=PPSortVar(name='B'))) ])) printTerm(t) # lib.compose((Z: (B --> Tensor[real][1,1])), (Z: (List[Tensor[real][1,1,28,28]] --> B))) t = Rules.expandToFuncApp(libSynth, t, 1, 'fold') assert (t == PPFuncApp( fn=PPVar(name='lib.compose'), args=[ PPFuncApp(fn=PPVar(name='lib.fold'), args=[ PPTermNT(name='Z', sort=PPFuncSort(args=[ PPTensorSort(param_sort=PPReal(), shape=[ PPDimConst(value=1), PPDimConst(value=1) ]), PPSortVar(name='A') ], rtpe=PPTensorSort( param_sort=PPReal(), shape=[ PPDimConst(value=1), PPDimConst(value=1) ]))), PPTermNT(name='Z', sort=PPTensorSort(param_sort=PPReal(), shape=[ PPDimConst(value=1), PPDimConst(value=1) ])) ]), PPTermNT(name='Z', sort=PPFuncSort(args=[ PPListSort( param_sort=PPTensorSort(param_sort=PPReal(), shape=[ PPDimConst(value=1), PPDimConst(value=1), PPDimConst(value=28), PPDimConst(value=28) ])) ], rtpe=PPListSort(param_sort=PPSortVar( name='A')))) ])) printTerm(t) # lib.compose(lib.fold((Z: ((Tensor[real][1,1], A) --> Tensor[real][1,1])), (Z: Tensor[real][1,1])), (Z: (List[Tensor[real][1,1,28,28]] --> List[A]))) t = Rules.expandToUnk(t, 1) assert (t == PPFuncApp( fn=PPVar(name='lib.compose'), args=[ PPFuncApp(fn=PPVar(name='lib.fold'), args=[ PPTermUnk( name='Unk', sort=PPFuncSort(args=[ PPTensorSort(param_sort=PPReal(), shape=[ PPDimConst(value=1), PPDimConst(value=1) ]), PPSortVar(name='A') ], rtpe=PPTensorSort( param_sort=PPReal(), shape=[ PPDimConst(value=1), PPDimConst(value=1) ]))), PPTermNT(name='Z', sort=PPTensorSort(param_sort=PPReal(), shape=[ PPDimConst(value=1), PPDimConst(value=1) ])) ]), PPTermNT(name='Z', sort=PPFuncSort(args=[ PPListSort( param_sort=PPTensorSort(param_sort=PPReal(), shape=[ PPDimConst(value=1), PPDimConst(value=1), PPDimConst(value=28), PPDimConst(value=28) ])) ], rtpe=PPListSort(param_sort=PPSortVar( name='A')))) ])) printTerm(t) # lib.compose(lib.fold((Unk: ((Tensor[real][1,1], A) --> Tensor[real][1,1])), (Z: Tensor[real][1,1])), (Z: (List[Tensor[real][1,1,28,28]] --> List[A]))) t = Rules.expandToFuncApp(libSynth, t, 1, 'zeros') assert (t == PPFuncApp( fn=PPVar(name='lib.compose'), args=[ PPFuncApp( fn=PPVar(name='lib.fold'), args=[ PPTermUnk(name='Unk', sort=PPFuncSort(args=[ PPTensorSort(param_sort=PPReal(), shape=[ PPDimConst(value=1), PPDimConst(value=1) ]), PPSortVar(name='A') ], rtpe=PPTensorSort( param_sort=PPReal(), shape=[ PPDimConst(value=1), PPDimConst(value=1) ]))), PPFuncApp( fn=PPVar(name='lib.zeros'), args=[PPTermNT(name='Z', sort=PPDimConst(value=1))]) ]), PPTermNT(name='Z', sort=PPFuncSort(args=[ PPListSort( param_sort=PPTensorSort(param_sort=PPReal(), shape=[ PPDimConst(value=1), PPDimConst(value=1), PPDimConst(value=28), PPDimConst(value=28) ])) ], rtpe=PPListSort(param_sort=PPSortVar( name='A')))) ])) printTerm(t) # lib.compose(lib.fold((Unk: ((Tensor[real][1,1], A) --> Tensor[real][1,1])), lib.zeros((Z: 1))), (Z: (List[Tensor[real][1,1,28,28]] --> List[A]))) t = Rules.expandDimConst(t, 1) assert (t == PPFuncApp( fn=PPVar(name='lib.compose'), args=[ PPFuncApp(fn=PPVar(name='lib.fold'), args=[ PPTermUnk( name='Unk', sort=PPFuncSort(args=[ PPTensorSort(param_sort=PPReal(), shape=[ PPDimConst(value=1), PPDimConst(value=1) ]), PPSortVar(name='A') ], rtpe=PPTensorSort( param_sort=PPReal(), shape=[ PPDimConst(value=1), PPDimConst(value=1) ]))), PPFuncApp(fn=PPVar(name='lib.zeros'), args=[PPIntConst(value=1)]) ]), PPTermNT(name='Z', sort=PPFuncSort(args=[ PPListSort( param_sort=PPTensorSort(param_sort=PPReal(), shape=[ PPDimConst(value=1), PPDimConst(value=1), PPDimConst(value=28), PPDimConst(value=28) ])) ], rtpe=PPListSort(param_sort=PPSortVar( name='A')))) ])) printTerm(t) # lib.compose(lib.fold((Unk: ((Tensor[real][1,1], A) --> Tensor[real][1,1])), lib.zeros(1)), (Z: (List[Tensor[real][1,1,28,28]] --> List[A]))) t = Rules.expandToFuncApp(libSynth, t, 1, 'map') assert (t == PPFuncApp( fn=PPVar(name='lib.compose'), args=[ PPFuncApp(fn=PPVar(name='lib.fold'), args=[ PPTermUnk( name='Unk', sort=PPFuncSort(args=[ PPTensorSort(param_sort=PPReal(), shape=[ PPDimConst(value=1), PPDimConst(value=1) ]), PPSortVar(name='B') ], rtpe=PPTensorSort( param_sort=PPReal(), shape=[ PPDimConst(value=1), PPDimConst(value=1) ]))), PPFuncApp(fn=PPVar(name='lib.zeros'), args=[PPIntConst(value=1)]) ]), PPFuncApp(fn=PPVar(name='lib.map'), args=[ PPTermNT(name='Z', sort=PPFuncSort(args=[ PPTensorSort(param_sort=PPReal(), shape=[ PPDimConst(value=1), PPDimConst(value=1), PPDimConst(value=28), PPDimConst(value=28) ]) ], rtpe=PPSortVar(name='B'))) ]) ])) printTerm(t) # lib.compose(lib.fold((Unk: ((Tensor[real][1,1], B) --> Tensor[real][1,1])), lib.zeros(1)), lib.map((Z: (Tensor[real][1,1,28,28] --> B)))) t = Rules.expandToVar(libSynth, t, 1, 'classify_digit') assert (t == PPFuncApp( fn=PPVar(name='lib.compose'), args=[ PPFuncApp(fn=PPVar(name='lib.fold'), args=[ PPTermUnk( name='Unk', sort=PPFuncSort(args=[ PPTensorSort(param_sort=PPReal(), shape=[ PPDimConst(value=1), PPDimConst(value=1) ]), PPTensorSort(param_sort=PPBool(), shape=[ PPDimConst(value=1), PPDimConst(value=10) ]) ], rtpe=PPTensorSort( param_sort=PPReal(), shape=[ PPDimConst(value=1), PPDimConst(value=1) ]))), PPFuncApp(fn=PPVar(name='lib.zeros'), args=[PPIntConst(value=1)]) ]), PPFuncApp(fn=PPVar(name='lib.map'), args=[PPVar(name='lib.classify_digit')]) ])) printTerm(t)
def getSort(): inType = mkListSort(mkRealTensorSort([1, 1, 28, 28])) outType = mkRealTensorSort([1, 1]) return mkFuncSort(inType, outType)
def mklst(t): return mkListSort(t)
def test6(): t = PPSortVar('T') t1 = PPSortVar('T1') t2 = PPSortVar('T2') def mk_recognise_5s(): res = NetCNN("recognise_5s", input_ch=1, output_dim=1, output_activation=F.sigmoid) res.load('../Interpreter/Models/is5_classifier.pth.tar') return res libSynth = FnLibrary() real_tensor_2d = mkTensorSort(PPReal(), ['a', 'b']) libSynth.addItems([ PPLibItem( 'recognise_5s', mkFuncSort(mkTensorSort(PPReal(), ['a', 1, 28, 28]), mkTensorSort(PPReal(), ['a', 1])), mk_recognise_5s()), PPLibItem( 'map', mkFuncSort(mkFuncSort(t1, t2), mkListSort(t1), mkListSort(t2)), pp_map), PPLibItem('reduce', mkFuncSort(mkFuncSort(t, t, t), mkListSort(t), t), pp_reduce), PPLibItem('add', mkFuncSort(real_tensor_2d, real_tensor_2d, real_tensor_2d), lambda x, y: x + y), ]) train, val = split_into_train_and_validation(0, 10) val_ioExamples = get_batch_count_iseven(digits_to_count=[5], count_up_to=10, batch_size=20, digit_dictionary=val) img = mkRealTensorSort([1, 1, 28, 28]) isFive = mkRealTensorSort([1, 1]) imgToIsFive = mkFuncSort(img, isFive) imgList = mkListSort(img) isFiveList = mkListSort(isFive) sumOfFives = mkRealTensorSort([1, 1]) fnSort = mkFuncSort(imgList, sumOfFives) interpreter = Interpreter(libSynth) """ targetProg = lambda inputs. reduce( add, map(lib.recognise_5s, inputs)) """ # TODO: use "search" instead of "solve" solver = SymbolicSynthesizer(interpreter, libSynth, fnSort, val_ioExamples, val_ioExamples) # solver.setEvaluate(False) solution, score = solver.solve() print(solution) print(score)