args.is_train = True args.gan_mode = 'vanilla' #'vanilla' args.trainImageSize = 128 args.skeleton_pca_dim = 52 args.skeleton_orig_dim = 63 #--device device = torch.device("cuda:" + args.gpu_ids if torch.cuda.is_available() else "cpu") args.device = device cudnn.benchmark = True #--HPE net setting if not 'hpe1_orig' in locals(): hpe_numBlocks = 5 hpe1_orig = dpnet(args.skeleton_pca_dim, hpe_numBlocks, device) checkpoint = torch.load(trained_modelFile_hpe1_orig) hpe1_orig.load_state_dict(checkpoint['state_dict']) #--HPE2 net setting if 'trained_modelFile_hpe2' in locals(): if not 'hpe2' in locals(): hpe2 = dpnet(args.skeleton_pca_dim, hpe_numBlocks, device) checkpoint = torch.load(trained_modelFile_hpe2) hpe2.load_state_dict(checkpoint['state_dict_hpe2']) else: if not 'hpe2' in locals(): hpe2 = dpnet(args.skeleton_pca_dim, hpe_numBlocks, device) checkpoint = torch.load(trained_modelFile_hpe1_orig) hpe2.load_state_dict(checkpoint['state_dict'])
args.gpu_ids = '0' args.lambda_L1 = 50 args.trainImageSize = 128 args.skeleton_pca_dim = 52 args.skeleton_orig_dim = 63 #device device = torch.device("cuda:%s" % args.gpu_ids if torch.cuda.is_available() else "cpu") args.device = device #network pix2pix = Pix2pix(args) hpe1 = dpnet(52, 5, device) hpe2 = dpnet(52, 5, device) net = FusionNet(pix2pix, hpe1, hpe2, args) w = np.random.rand(args.skeleton_orig_dim, args.skeleton_pca_dim) b = np.random.rand(args.skeleton_orig_dim) net.set_reconstruction_net(w, b) net = net.to(device) #run ir = np.random.rand(args.train_batch, 1, 128, 128) depth = np.random.rand(args.train_batch, 1, 128, 128) net.set_input(ir, depth)